SESSION 6. HUMAN DISEASE

Cancer as a result of aberrant proteins

[Keywords] Cancer-driving mutations Fusion gene Sequence alignment Dynamic programming

Cancer vs Tumor

<u>Tumor (cell mass): benign or malignant tumors</u> <u>Malignant tumor → cancer</u> <u>Uncontrolled cell divisions (</u>i.g., defects in cell-cycle checkpoints)

Resulted 1) by overproduction of proteins that stimulate cell growth or 2) by the inactivation of tumor suppressors that normally restrict cell growth.

Cancer is a complex disease caused by multiple gene mutations and epigenetic factors

Causal factors of cancer

- Two main non-genetic causal factors
 - Tabaco
 - Obesity
- Genetic factors
 - Germline mutations
 - i.e., BRCA1, 2
 - Genome instability
 - Somatic mutations

- Most tumors are most common results of mutation in somatic cells (somatic mutations).
- Mutations in oncogenes and/or tumor suppressor genes
- i.e., mutations in Wnt signaling pathway or in RB gene.

DNA damage and repair

- Chemicals and irradiation make DNA damages, point mutations or double-strand breaks.
- Mutations in **DNA repair systems** can cause cancer
- i.e., mutations in genes involved in nucleotide excision repair system

General mutational process during cancer development

1) Sporadic mutations by replication errors or other foreign factors \rightarrow 2) mutations on DNA repair systems \rightarrow 3) highly frequent mutations \rightarrow 4) mutations on cancer-driving genes

Additional gene mutations

- Mutations on apoptotic genes
- TGF-beta and DCC mutations in colorectal cancer

Mutation patterns on OG & TS

Chromosomal rearrangement in cancer

Aneuploidy

 Resulted from missegregation of chr. in meiosis or mitosis

Structural variations

- Large insertion/deletion
- Inversion
- Translocation (inter/intra)
- Duplication

Copy number alteration

Copy gain or loss

Causes of SV

- Nonhomologous recombination
- Mis-replication
- DNA ds breaks by chemicals or irradiation

Copy number alterations on OG & TS

Philadelphia chromosome and fusion

genes

- SVs often lead to formation of fusion genes
- Fusion genes
 - Two genes can be fused by translocation, inversion, or deletion
 - i.e., Philadelphia chromosome in Leukemia

Before translocation During translocation After translocation A piece of Chromosome 9chromosome 9 and a piece of chromosome 22 switch places. Philadelphia (Ph) abl gene chromosome Fusion gene (bcr-abl combined) Chromosome 22 bcr gene The switch results in the formation of the Philadelphia, or Ph, chromosome. This is a mutation that carries a new fusion gene (bcr-abl combined).

DEVELOPMENT OF PHILADELPHIA CHROMOSOME

Target therapy for bcr-abl fusion gene

How to identify such fusion genes?

- Sequence alignment
 - Dot plot
 - Alignment

 □ Sequencing → Alignment
 → Identification of splitreads

ь	ABL1 gene transcript		1			
	BCR-ABL fusion	Exons 1–14	Exons 2–11			
	BCR gene transcript					
с						
GTC	ATCGTCCACTCAGCCAC	TGGATTTAAGCAGAGTTCAAA	TCTGTACTGCACCCTG	GAGGTGGATTCCTTTG	GGTATTTT	BCR
AGG	CATGGGGGTCCACACTG	CAATGTTTTTGTGGAACATGA	AGCCCTTCAGCGGCCA	GTAGCATCTGACTTTG	AGCCTCAG	ABL1
GTC	ATCGTCCACTCAGCCAC	tggatttaagcagagttcaaa	AGCCCTTCAGCGGCCA	GTAGCATCTGACTTTG	AGCCTCAG	BCR-ABL fusion transcript
TC	AT-GTOCAGTCAGCCAC TCCACTAGCCAC CCACTAGCCAC CAGCCAC CAGCCAC GCCAC GCCAC CAC C	ГОСАТТТАА-САСАСТТСАРА, ГОСАТТТААССАСАСТТСАРА, ГОСАТТТААССАСАСТТСАРА, ГОСАТТТААССАСАСТТСАРА, ГОСАТТТААССАСАСТТСАРА, ГОСАТТТААССАСАСТТСАРА, ГОСАТТТААССАСАСТТСАРА, ГОСАТТТААССАСАСИТТСАРА, ТСАТТТААССАСАСИТТСАРА, АТТТААССАСАСИТТСАРА, АТТТААССАСАСИТТСАРА, АТТСАРСАСАСИСТТСАРА, САСАСТТСАРА, САСАСТТСАРА, СТСАРА, ССАРАТСАРА, ССАРА ССАРА	AGC AGCC: AGCCTTCAGC AGCCTTCAGC AGCCTTCAGC AGCCTT AGCCTT AGCCTTCAGCGGC-A AGCCTTCAGCGGCA AGCCTTCAGCGGCCA AGCCTTCAGCGGCCA AGCCTTCAGCGGCCA AGCCCTTCAGCGGCCA AGCCCTTCAGCGGCCA AGCCCTTCAGCGGCCA AGCCCTTCAGCGGCCA AGCCCTTCAGCGGCCA AGCCCTTCAGCGGCCA AGCCCTTCAGCGGCCA AGCCCTTCAGCGGCCA	STAG STAGCA STAGCATCTGACTTTG TTAGCATCTGACTTTG G STAGCATCTGACTTTG STAGCATCTGAC STAGCATCTGAC STAGCATCTGACTTTG STAGCATCTGACTTTG STAGCATCTGACTTTG	iag ià-c i iag iag cagoctcag iag	

BCR-ABL1

DOT plots

• Construct a simple dot plot for

TAGTCGATG TGGTCATC

• The alignment is TAGTCGATG TGGTC-ATC

Dynamic programming

 $\square f(i,j) = \max [0, f(i-1, j-1) + s(x_i, y_j), f(i-1, j) - d, f(i, j-1) - d]$

s(x, y) = -1 (mismatch)/ 2(match) -d = -2

 C
 A
 A
 C
 A
 A

 0
 0
 0
 0
 0
 0
 0

 T
 0
 0
 0
 0
 0
 0
 0

 A
 0
 0
 2
 2
 0
 2
 2

 A
 0
 0
 2
 4
 2
 2
 4

 A
 0
 0
 2
 4
 3
 4
 4

 A
 0
 0
 2
 4
 3
 5
 6

CAACAA TAA-AA

Sequence alignment

- Local alignment
 - Covers parts of the sequences involved (Smith-Waterman alg.)

Global alignment

 Covers the entire lengths of the sequences involved (Needleman-Wunsch alg.)

tccCAGTTATGTCAGgggacacgagcatgcagagac ||||||||||| aattgccgccgtcgttttcagCAGTTATGTCAGatc

T-	-CC-C	-AGT-	-TAT	GT	-CAGGO	GACACG-	A-GC	ATGCAG	A-GAC
1	11 1	11	11	1	111		11	1 111	1 1
AATT	GCCGC	C-GTC	GT-T	-T	FCAG	CA-GI	TATG-	-T-CAG	ATC

BLAST

- Journal of Molecular Biology (Altschul et al., 1990)
- BLAST (basic local alignment search tool)
- Compare a query sequence (DNA, RNA, protein seq.)
- □ K-mer-based nucleation search → Alignment extension

BLAST algorithm

- Remove low-complexity region or sequence repeats in the query sequence
- Make a k-letter word list of the query sequence.
- List the possible matching words.
- Organize the remaining high-scoring words into an efficient search tree.
- Repeat step 3 to 4 for each k-letter word in the query sequence.
- Scan the database sequences for exact matches with the remaining high-scoring words.
- Extend the exact matches to high-scoring segment pair (HSP).
- List all of the HSPs in the database whose score is high enough to be considered.
- Evaluate the significance of the HSP score.

$$p(S \ge x) = 1 - \exp\left(-e^{-\lambda(x-\mu)}\right)$$

BLAST Execution (make indexed_db)

Type the following in at the command prompt: "formatdb –i maize_genes.txt –p F –o F" (this command will format the target database, maize_genes.txt, so that it can be searched by BLAST)

```
-i Input file(s) for formatting [File In] Optional
-p Type of file

T - protein
F - nucleotide [T/F] Optional
default = T

-o Parse options

T - True: Parse SeqId and create indexes.
F - False: Do not parse SeqId. Do not create indexes
```

BLAST Execution

blastall -p [blastn, blastp, blastx, tblastx] -d [database] -i [query.fa] -e [Expectation value] -m [alignment view]

```
-p Program Name [String]
-d Database [String]
  default = nr
-i Ouery File [File In]
  default = stdin
-e Expectation value (E) [Real]
  default = 10.0
-m alignment view options:
     0 = pairwise,
     1 = query-anchored showing identities,
     2 = query-anchored no identities,
     3 = flat guery-anchored, show identities,
     4 = flat query-anchored, no identities,
     5 = query-anchored no identities and blunt ends,
     6 = flat query-anchored, no identities and blunt ends,
     7 = XML Blast output,
     8 = tabular,
     9 tabular with comment lines
```

BLAST Execution

Scoring matrix (PAM, BLOSUM) for protein sequence alignment

- BLOSUM (BLOcks SUbstitution Matrix) matrix is a substitution matrix used for sequence alignment of proteins.
- scanned the BLOCKS database for very conserved regions of protein families (that do not have gaps in the sequence alignment) and then counted the relative frequencies of amino acids and their substitution probabilities

Ala	4																				
Arg	- 1	5																			
Asn	- 2	0	б																		
Asp	- 2	- 2	1	б																	
Cys	0	- 3	- 3	- 3	9																
Gln	- 1	1	0	0	- 3	5															
Glu	- 1	0	0	2	- 4	2	5														
Gly	0	- 2	0	- 1	- 3	- 2	- 2	б													
His	- 2	0	1	- 1	- 3	0	0	- 2	8												
lle	- 1	- 3	- 3	- 3	- 1	- 3	- 3	- 4	- 3	4											
Leu	- 1	- 2	- 3	- 4	- 1	- 2	- 3	- 4	- 3	2	4										
Lys	- 1	2	0	- 1	- 3	1	1	- 2	- 1	- 3	- 2	5									
Met	- 1	- 1	- 2	- 3	- 1	0	- 2	- 3	- 2	1	2	- 1	5								
Phe	- 2	- 3	- 3	- 3	- 2	- 3	- 3	- 3	- 1	0	0	- 3	0	б							
Pro	- 1	- 2	- 2	- 1	- 3	- 1	- 1	- 2	- 2	- 3	- 3	- 1	- 2	- 4	7						
Ser	1	- 1	1	0	- 1	0	0	0	- 1	- 2	- 2	0	- 1	- 2	- 1	4					
Thr	0	- 1	0	- 1	- 1	- 1	- 1	- 2	- 2	- 1	- 1	- 1	- 1	- 2	- 1	1	5				
Trp	- 3	- 3	- 4	- 4	- 2	- 2	- 3	- 2	- 2	- 3	- 2	- 3	- 1	1	- 4	- 3	- 2	11			
Tyr	- 2	- 2	- 2	- 3	- 2	- 1	- 2	- 3	2	- 1	- 1	- 2	- 1	3	- 3	- 2	- 2	2	7		
Val	0	- 3	- 3	- 3	- 1	- 2	- 2	- 3	- 3	3	1	- 2	1	- 1	- 2	- 2	0	- 3	- 1	4	
	Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly	His	lle	Leu	Lys	Met	Phe	Pro	Ser	Thr	Trp	Tyr	Val	