Molecular Biology Laboratory

Bioinformatics and Genomics Lab.

Week2. Protein Sequence Alignment (BLAST, Clustal Omega) & Domain Search

- 1. Practice how to use UniProt database
- Find information on GFP and get the amino acid sequence
 - \triangleright Search "uniprot" in google and access UniProt.

Search "GFP" and select 1st one (P42212).

UniProt BLAST Align Pepti	ide search ID mapping	SPARQL UniProtKB •	GFP	Advanced List	Search 🚔 🕯	à 🗠 Help
Status Reviewed (Swiss-Prot) (392) Unreviewed (TrEMBL) (6,447)	UniProtKB BLAST Align Map IE	6,839 results	or search "GFP" as a Prot Id View: Cards ○	ein family, Gene Name, Prot Table 💿 🖉 Customize	ein Name, Organism, or columns 🧠 Share	Taxonomy
Popular organisms Zebrafish (57) A. thaliana (42) Human (25)	 Entry ▲ P42212 ▲ 3 	Entry Name ▲ GFP_AEQVI	Protein Names A Green fluorescent protein	Gene Names 🔺	Organism Aequorea victoria (Water jellyfish) (Mesonema victoria)	Length ▲ 238 AA
Mouse (18) E. coli K12 (12) Taxonomy	🗆 Q9SEU7 🏻 🤱	TRXM3_ARATH	Thioredoxin M3, chloroplastic[]	GAT1 , At2g15570, F9O13.12	Arabidopsis thaliana (Mouse-ear cress)	173 AA

We can find information on GFP protein. To get the amino acid sequence, click "Sequence"- "Download".

2. Practice how to use BLASTP

- Try sequence alignment of GFP
 - > Search "blastp" in google and access BLASTP

Copy and paste the GFP sequence to the query sequence box and set job title. Select program algorithm as "blastp" and click "BLAST" button to run the tool

	BLAST [®] » blastp suite	
blastn bla	astp blastx tblastn tblastx	Standard Protein BLAST
		BLASTP programs search protein databases using a pro
Enter Query S Enter accession nu	equence umber(s), gi(s), or FASTA sequence(s) 😯 Clear 🔶 Query subran	ge 😧
NRIELKGIDFKEDGN GSVQLAD HYQQNTPIGDGPVLI MDELYK	ILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIED	
Or, upload file	파일 선택 선택된 파일 없음 ү 🕜	
Job Title	GFP Enter a descriptive title for your BLAST search ?	
Align two or mor	re sequences 😮	
Choose Searc	h Set	
Databases	Standard databases (nr etc.): New O Experimental databases	For more info see What is clustered nr?
Compare	Select to compare standard and experimental database 😯	

Drogram Cala	ation
Program Selec	cuon
Algorithm	 Quick BLASTP (Accelerated protein-protein BLAST) blastp (protein-protein BLAST) PSI-BLAST (Position-Specific Iterated BLAST) PHI-BLAST (Pattern Hit Initiated BLAST) DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) Choose a BLAST algorithm ?
BLAST	Search database nr using Blastp (protein-protein BLAST) Show results in a new window

Select GFP of "Aequorea victoria" and check information (Query cover, Per. Ident, Graphic Summary etc.)

Job Title	GFP	Filter Results				
RID	PHBHJCYM01R Search expires on 11-08 14:05 pm Download All V					
Program	BLASTP 😧 Citation 🗸	Organism only top 20 will appear exclude				
Database	nr <u>See details</u> Y	Type common name, binomial, taxid or group name				
Query ID	Icl Query_69491	+ Add organism				
Description	sp P42212 GFP_AEQVI Green fluorescent protein OS=Ae	Percent Identity E value Query Coverage				
Molecule type	amino acid	to to to				
Query Length	238					
Other reports	Distance tree of results Multiple alignment MSA viewer	Filter Reset				
	Compare these results against the new Clustered nr database ? BLAST					
Descriptions	Graphic Summary Alignments Taxonomy					
Sequences p	producing significant alignments	Download ∨ Select columns ∨ Show 100 ♥ @				
select all	1 sequences selected	GenPept Graphics Distance tree of results Multiple alignment MSA Viewer				
	Description	Scientific Name Max Total Query E Per. Acc. Score Score Cover Value Ident Len Accession				
green fluore	scent protein [synthetic construct]	synthetic construct 496 496 100% 5e-177 100.00% 247 AAB51347.1				
linker-GFP [Cloning vector pGGD001]	Cloning vector p 497 497 100% 6e-177 99.16% 272 AHE38523.1				
unnamed pr	otein product [Binary vector pZH2B-2ox3i]	Binary vector pZ 496 496 100% 6e-177 99.16% 266 BAJ22064.1				
GFP-NLS [C	Cloning vector pGGC012]	Cloning vector p 498 498 100% 1e-176 99.16% 323 AHE38509.1				
RecName: F	-ull=Green fluorescent protein [Aequorea victoria]	Aequorea victoria 494 494 100% 1e-176 100.00% 238 P42212.1				
mitochondria	a-targeted synthetic green fluorescent protein [Gateway binary vector R4L1pGWB4	Gateway binary 497 497 100% 1e-176 99.16% 296 BBG75473.1				

- 3. Practice how to use Clustal Omega
- Try multiple sequence alignment (MSA) of GFP, CFP, YFP, and RFP
 - Copy and paste sequence to the given "FASTA" file (Week2_Fluorescence_Protein _Sequences_for_Upload.fa). Edit header part of GFP as ">GFP" for MSA.

Week2_Fluorescence_Protein_Sequent	ces.fa - Windows 메모장			- [
파일(F) 편집(E) 서식(O) 보기(V) 도	-움말(H)				
>GFP				*	^
MSKGEELFTGVVPILVELDGDVNG	GHKFSVSGEGEGDAT	YGKLTL	KFICTTGKLPVPW	VPTL	
VTTFSYGVQCFSRYPDHMKQHD	FFKSAMPEGYVQERT	IFFKDD	GNYKTRAEVKFE	GDTLV	
NRIELKGIDFKEDGNILGHKLEYNY	(NSHNVYIMADKQKN	IGIKVN	FKIRHNIEDGSVC)LAD	
HYQQNTPIGDGPVLLPDNHYLST >CFP	QSALSKDPNEKRDHI	MVLLE	FVTAAGITHGMD	ELYK	
MSKGEELFTGVVPILVELDGDVNG	GHKFSVSGEGEGDAT	YGKLTL	KFICTTGKLPVPW	VPTL	
VTTFSWGVQCFSRYPDHMKQHE	OFFKSAMPEGYVQER	TIFFKD	DGNYKTRAEVKF	EGDTL\	/
NRIELKGIDFKEDGNILGHKLEYNY	(NSHNVYIMADKQKN	IGIKVN	FKIRHNIEDGSVC)LAD	
HYQQNTPIGDGPVLLPDNHYLST >YFP	QSALSKDPNEKRDH	MVLLE	VTAAGITHGMD	ELYK	
MSKGEELFTGVVPILVELDGDVNG	GHKFSVSGEGEGDAT	YGKLTL	KLLCTTGKLPVPV	NPTL	
VTTFGYGLQCFARYPDHMKRHD	FFKSAMPEGYVQERT	IFFKDD	GNYKTRAEVKFE	GDTLV	
NRIELKGIDFKEDGNILGHKLEYNY	(NSHNVYIMADKQKN	IGIKVN	FKIRHNIEDGSVC)LAD	
HYQQNTPIGDGPVLLPDNHYLSY >RFP	QSALFKDPNEKRDHI	MVLLEF	LTAAGITEGMN	ELYK	
MRSSKNVIKEFMRFKVRMEGTVN	GHEFEIEGEGEGRPY	EGHNT	VKLKVTKGGPLPF	AWDI	
LSPQFQYGSKVYVKHPADIPDYKK	KLSFPEGFKWERVMN	FEDGG	VVTVTQDSSLQD	GCFIY	
KVKFIGVNFPSDGPVMQKKTMG\	WEASTERLYPRDGVL	KGEIHK	ALKLKDGGHYLV	EFKSI	
YMAKKPVQLPGYYYVDSKLDITSH	HNEDYTIVEQYERTEG	RHHLF	L		
					~
	Ln 20, Col 46	100%	Windows (CRLF)	UTF-8	
Search "clustal omega" in	google and access Cl	ustal Or	nega.		

Google	clustal omega	× 🔳 🎙 🔍				
Q 전체 🔲 이미지	▶ 동영상 ▮ 도서 ▤ 뉴스 :더보기	도구				
검색결과 약 695,000개	(0.36초)					
도움말: 한국어 검색결]	도움말: <mark>한국어</mark> 검색결과만 검색합니다. 환경설정에서 검색 언어를 지정할 수 있습니다.					
https://www.ebi.ac.uk>	Tools > msa > clustalo 💌					
Clustal Omega < Multiple Sequence Alignment < EMBL-EBI						
Clustal Omega is a ne and HMM profile-profile	w multiple sequence alignment program that uses see e techniques to generate alignments between	eded guide trees				

> Upload "FASTA" file, go to below and click "Submit" for MSA

Multiple Sequence Alignment								
Clustal Omega is a new multiple sequence alignment program that uses seeded guide trees and HMM profile-profile								
techniques to generate alignments between three or more sequences. For the alignment of two sequences please instead use our pairwise sequence alignment tools.								
Important note: This tool can align up to 4000 sequences or a maximum file size of 4 MB.								
STEP 1 - Enter your input sequences								
Enter or paste a set of								
PROTEIN								
sequences in any supported format:								
Or, upload a file: 파일 선택 Week2_FluorSequences.fa Use a example sequence Clear sequence See more example inputs								

> In the result, we can see how similar each fluorescence proteins.

Results for job clustalo-I20220907-021907-0571-83271431-p1m					
Alignments Result Su	mmary Guide Tre	Phylogenetic Tree	Results Viewers	Submission Details	
Download Alignment F	ile Hide Colors				
CLUSTAL O(1.2.4) multiple se	equence alignment				
RFP MRSSKNVIKEFMRFKVRME VFP MSKGEELFTGVVPILVELC GFP MSKGEELFTGVVPILVELC CFP MSKGEELFTGVVPILVELC *	GTVNGHEFE I EGEGEGRPVEGH IGDVNGHKFSVSGEGEGDATVGKI IGDVNGHKFSVSGEGEGDATVGKI IGDVNGHKFSVSGEGEGDATVGKI * *****:*.:****** *:	NTVKLKVTKGGPLPFAWD1 60 LTLKLLCT-TGKLPVPWPT 59 LTLKF1CT-TGKLPVPWPT 59 LTLKF1CT-TGKLPVPWPT 59 *:*: * * ***. *			
RFP LSPQFQYGSKVYVKHPAD VFP LVTTFGYGLQCFARVPDHN GFP LVTTFSVGVQCFSRVPDHN CFP LVTTFSWGVQCFSRVPDHN * *	POYKKLSFPEGFKWERVMNFG KRHDFFKSAMPEGVVQERTIFFI KQHDFFKSAMPEGVVQERTIFFI KQHDFFKSAMPEGVVQERTIFFI *: * ::***: **.: *	EDGGVVTVTQDSSLQDGCF 118 KDDGNYKTRAEVKFEGDTL 119 KDDGNYKTRAEVKFEGDTL 119 KDDGNYKTRAEVKFEGDTL 119 KDDGNYKTRAEVKFEGDTL 119 :*.*			
RFP I YKVKF I GVNFPSDGPVMC VFP VNR I ELKG I DFKEDGN I LG GFP VNR I ELKG I DFKEDGN I LG CFP VNR I ELKG I DFKEDGN I LG ::::::::::::::::::::::::::::::::::::	IXKTMGWEASTERLYPROGYLKGI IHKL-EYNYNSHNYY IMADKQKN(IHKL-EYNYNSHNYY IMADKQKN(IHKL-EYNYNSHNYY IMADKQKN(I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ETHKALKLKDGGHYL 174 GTKVNFKTRHNTEDGSVQL 178 GTKVNFKTRHNTEDGSVQL 178 GTKVNFKTRHNTEDGSVQL 178 *: :* ::**. *			
RFP VEFKS I YMAKKPYQLPG VFP ADHYQQNTP I GDGPVLLPG GFP ADHYQQNTP I GDGPVLLPG CFP ADHYQQNTP I GDGPVLLPG	WYWYDSKLDITSHNEDYTIVEQ INHYLSYQSALF	YERTEGRHHLFL 225 KOPNEKRDHMVLLEFLTAA 227 KDPNEKRDHMVLLEFVTAA 227 KDPNEKRDHMVLLEFVTAA 227 : .* *.*:.*			
RFP 225 VFP GITEGMNELYK 238 GFP GITHGMDELYK 238 CFP GITHGMDELYK 238					

4. Practice how to find protein domain

- Find sequence and domains of TP53 using "UniProt"
 - Search "Human P53" and select 1st one (P04637).

UniProt Tools - SPARQ	L UniProtKB •	Human P53		Advanced List	Search 🚑 🕯	🗃 🗹 Help
Status Reviewed (Swiss-Prot) (1,018)	UniPro	tKB 26,864 I	results d ⊕ Add View: Cards	🔿 Table 🖲 🖉 Cust	omize columns 👒	Share •
Unreviewed (TrEMBL) (25,846)	Entry 🔺	Entry Name 🔺	Protein Names 🔺	Gene Names 🔺	Organism 🔺	Length 🔺
Popular organisms Human (1,348)	P04637	P53_HUMAN	Cellular tumor antigen p53[]	TP53 , P53	Homo sapiens (Human)	393 AA
Zebrafish (298)	P02340	P53_MOUSE	Cellular tumor antigen p53[]	Tp53 , P53, Trp53	Mus musculus (Mouse)	390 AA
Rat (22) Fruit fly (11)	D P07193	P53_XENLA	Cellular tumor antigen p53[]	tp53	Xenopus laevis (African clawed frog)	363 AA

Get the protein sequence of TP53.

>sp|PO4637|P53_HUMAN Cellular tumor antigen p53 OS=Homo sapiens OX=9606 GN=TP53 PE=1 SV=4 MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGP DEAPRMPEAAPPVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAK SVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHE RCSDSDGLAPPQHLIRVEGNLRVEVLDDRNTFRHSVVVPVEPPEVGSDCTTIHVNYMCNS SCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELP PGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPG GSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD

> Click "Family & Domains" to see the domain information of TP53.

atures wing features for region ⁱ , m	otif ⁱ , compositi										
wing features for region ⁱ , m	otif ⁱ , compositi		Features								
		Showing features for region ⁱ , motif ⁱ , compositional bias ⁱ .									
ATG											
50 100	150	1 1 1 200 250 300	350								
			393								
-											
TYPE	D POSITION(S) DESCRIPTION									
Select 🔻											
			BLAST								
Region	1-44	Transcription activation (acidic)	🛍 Add								
Region	1-83	Interaction with HRMT1L2	BLAST								
Region	100	1 Publication	the Add								
Region	1-320	Interaction with CCAR2	BLAST								
		1 Publication	toor Add								
Motif	17-25	TADI	BLAST								
	1, 25		ter Add								
Motif	48-56	TADII	BLAST								
	• • • • • • • • • • • • • • • • • • •	TYPE io io <	ID POSITION(S) DESCRIPTION								

- Find domains of TP53 using "NCBI Conserved Domains" •
 - > Search "ncbi conserved domain" in google and access NCBI Conserved Domain Search.

Copy and paste the sequence of TP53 in the box and click "Submit".

S NCBI		ary Conserved of ary Conserved of pol Domains was all Seabyy Kei wey	MA k a L V D e U P	147452720/ 150 Entroit
HOME SEARCH GUIDE	Structure Home	3D Ma	cromolecular Structures	Conserved Domains
Enter protein or nucleotic Search. (2) Page 125220025250000000000000000000000000000	Search for Conse de query as accession, gi, or sequer in FASTA balliate router and per 160 - 00-1000 estate and and an accession of the second second second second and an accession of the second second second second second and an accession of the second second second second second second and an accession of the second secon	Erved Domains within format. For multiple protein queries, ns OX=9606 GM=IBS3 PE=1 SV=4	a protein or coding nucleo use Batch CD- Search against databa Expect Value ① thresh Apply low-complexity Composition based st Force live search ② Rescue borderline hits Maximum number of f Result mode @Concise	btide sequence ase (7): CDD v3.19 - 58235 PSSMs v hold: [0.010000 filter (7) atistics adjustment (7) 2 : Suppress weak overlapping hits hits (7) 500 : Standard (7) OFull (7)
Submit	Reset Help			
➢ In th	e result, we can see	domains of TP5	3.	

Conserved domains on [sp]P04637]						
P53_HUMAN Cel	lular tumor antigen p53	OS=Homo sapiens OX=9606 GN=TP53 PE=1 SV=4				
Graphical sur	nma ry 🗌 Zoom to re	sidue level show extra options »		?		
0.00000 0.000	50	100 150 200 250 300 350 		393		
uuerg seq.		dimenization site MA DNA binding site MA		-		
Specific hits	F53_TAD	P53 P53				
Superfamilies	P53_TAD SUPE TAD2	P53 superfamily P53_tetraver superf				
4				Þ		
		Search for similar domain architectures 2 Refine search 2				
List of domai	n hits			?		
+ Name	Accession	Description	Interval	E-value		
[+] P53	cd08367	P53 DNA-binding domain; P53 is a tumor suppressor gene product; mutations in p53 or lack of	109-288	4.67e-97		
[+] P53_tetramer	pfam07710	P53 tetramerisation motif;	319-355	3.73e-15		
[+] TAD2 super fami	ly cl39845	Transactivation domain 2; This is a N-terminal transactivation domain (TAD) domain 2 found in	35-59	2.71e-11		
[+] P53_TAD	pfam08563	P53 transactivation motif; The binding of the p53 transactivation domain by regulatory	6-30	9.43e-09		