
WEEK 15. PRACTICE

Differentially expressed gene(DEG) analysis

Differential expression analysis with DESeq2

Input data for this week

From www.bloodjournal.org by guest on December 10, 2018. For personal use only.

Regular Article

MYELOID NEOPLASIA

GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo

Caroline Pabst, ^{1,2} Anne Bergeron, ³ Vincent-Philippe Lavallée, ^{1,4} Jonathan Yeh, ¹ Patrick Gendron, ⁵ Gudmundur L. Norddahl, ⁶ Jana Krosl, ¹ Isabel Boivin, ¹ Eric Deneault, ¹ Jessica Simard, ³ Suzan Imren, ⁶ Geneviève Boucher, ⁵ Kolja Eppert, ⁷ Tobias Herold, ⁸ Stefan K. Bohlander, ⁹ Keith Humphries, ⁶ Sébastien Lemieux, ^{5,10} Josée Hébert, ^{4,11,12,*} Guy Sauvageau, ^{1,4,11,12,*} and Frédéric Barabé ^{3,13,14,*}

- The data reported in this article have been deposited in the Gene Expression Omnibus database (accession numbers GSE49642, GSE52656, GSE62190, GSE66917, GSE67039, GSE48843, GSE48846, and GSE51984).
- RNA-seq of T-cells and B-cells (5 replicates for each cell types)
- the genes whose variances of RNA-seq expression values (FPKM) among the samples are high were selected (501 genes)

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51984

install R studio

DOWNLOAD

RStudio Desktop

Used by millions of people weekly, the RStudio integrated development environment (IDE) is a set of tools built to help you be more productive with R and Python.

Don't want to download or install anything? Get started with RStudio on <u>Posit Cloud for free</u>. If you're a professional data scientist looking to download RStudio and also need common enterprise features, don't hesitate to <u>book a call with us</u>.

1: Install R

RStudio requires R 3.3.0+. Choose a version of R that matches your computer's operating system.

DOWNLOAD AND INSTALL R

2: Install RStudio

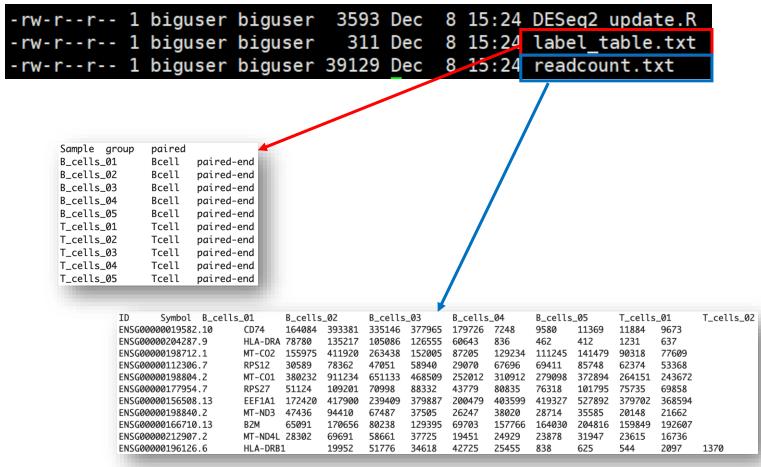
DOWNLOAD RSTUDIO DESKTOP FOR WINDOWS

Size: 214.34 MB | <u>SHA-256</u>: <u>FE62B784</u> | Version: 2023.09.1+494 | Released: 2023-10-17

```
if (!require("BiocManager", quietly = TRUE))
  install.packages("BiocManager")

BiocManager::install("DESeq2")|
install.package("ggplot2")
install.packages("reshape2")
```

Identification of DEGs using DESeq2


DESeq2

- test for differential expression based on a model using the negative binomial distribution

• Usage (in R):

Input files for the DESeq2

cp /home/biguser/tutor/Week15/inputTables/* .

R code to run DESeq2

```
-rw-r--r-- 1 biguser biguser 3593 Dec 8 15:24 DESeq2_update.R
-rw-r--r-- 1 biguser biguser 311 Dec 8 15:24 label_table.txt
-rw-r--r-- 1 biguser biguser 39129 Dec 8 15:24 readcount.txt
```

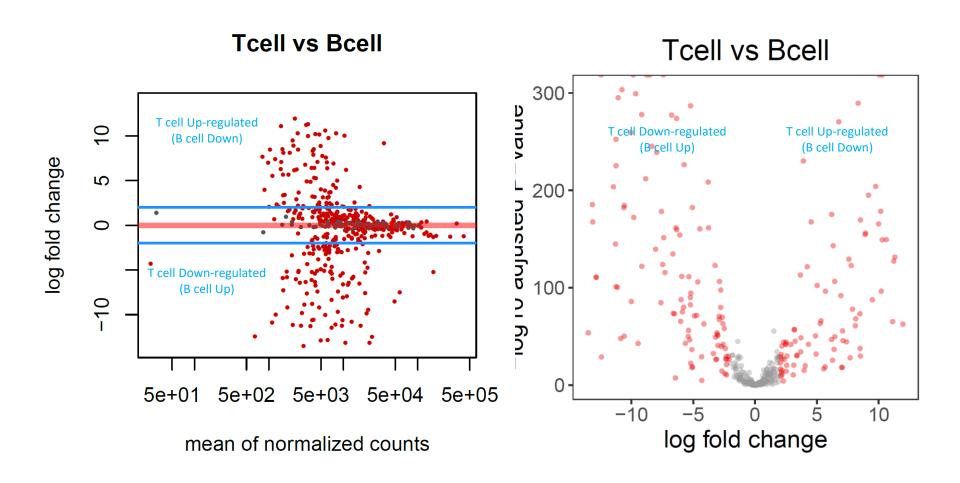
```
##install the DESeq2 package##
#source("https://bioconductor.org/biocLite.R")
#biocLite("DESeq2")
##get a DESeg2 package##
DESeq2 <- function(readCountTable, tableInfoFile, outputFile, gradeIn, gradeBk) {</pre>
   library('DESeq2', verbose = F
library(ggplot2, verbose = F)
   library(reshape2, verbose = F)
##read count matrix table and information table##
   avgReadCount <- read.delim(readCountTable, header = TRUE, sep = '\t', row.names = 1, check.names = FALSE)</pre>
   avgReadCount <- avgReadCount[c(-1)] #remove gene symbol column</pre>
   avgReadCountInfo <- read.table(tableInfoFile, header = TRUE, sep = '\t', row.names = 1, check.names = FALSE)
##DEG run##
   dds <- DESeqDataSetFromMatrix(countData = avgReadCount, colData = avgReadCountInfo, design = ~ group)
       dds <- dds[ rowSums(counts(dds)) > 20, ]
   dds <- DESeq(dds)
   result 05 <- results(dds, alpha = 0.05, contrast=c("group", gradeIn, gradeBk))
   outputPdf <- unlist(strsplit(outputFile, split = '.txt', fixed = TRUE))[1]</pre>
   outputMaPdf <- paste(c(outputPdf, '.maplot.pdf'), collapse = ''
   pdf(outputMaPdf, width = 4, height = 4)
   abline(h=c(-2,2), col = 'dodgerblue', lwd = 2)
   dev.off()
```

R code to run DESeq2

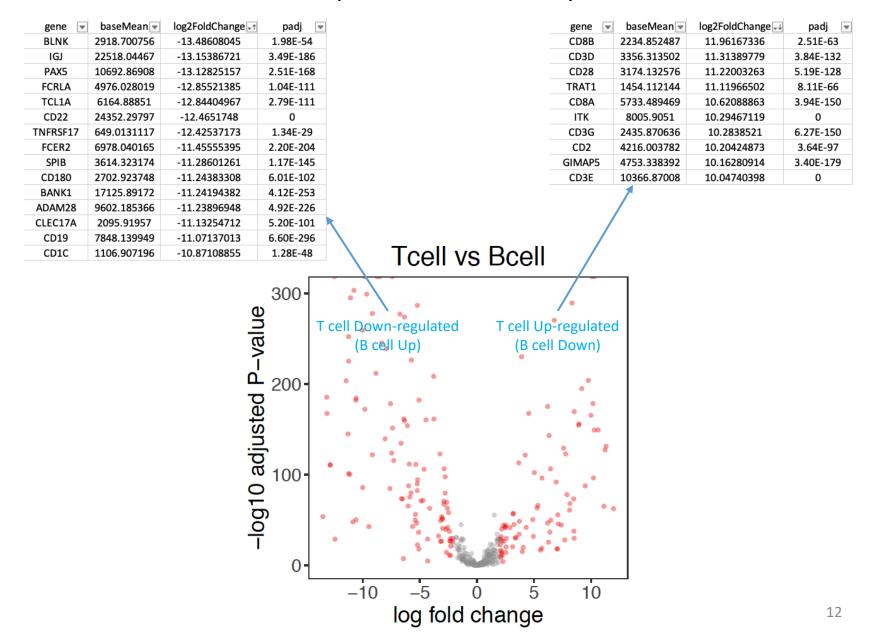
```
newColumn <- c('
     writeTable <- data.frame(result_05)</pre>
     writeTable <- data.frame(row.names(writeTable), writeTable)</pre>
     colnames(writeTable) <- newColumn
     outputFile <- strsplit(outputFile, split = 'txt')</pre>
     allOutFile <- paste(c(outputFile, 'all.txt'), collapse = '')
write.table(writeTable, file = allOutFile, quote = FALSE, sep = '\t', col.names = TRUE, row.names = FALSE)
##adjusted P-value cutoff##
     sig_result_05 <- subset(result_05, padj < 0.05)</pre>
     df sig result 05 <- data.frame(sig result 05)</pre>
     df_sig_result_05 <- data.frame(row.names(df_sig_result_05), df_sig_result_05)
     colnames(df sig result 05) <- newColumn
     sigOutFile <- paste(c(outputFile, 'sig.txt'), collapse = '')</pre>
     write.table(df_sig_result_05, file = sigOutFile, quote = FALSE, sep = '\t', col.names = TRUE, row.names = FALSE)
##volcano plot
     writeTable <- na.omit(writeTable)</pre>
     siqDeq <- as.factor(abs(writeTable$log2FoldChange) >= 2 & writeTable$padj <= 0.05)</pre>
     lgfcMax <- max(c(abs(min(writeTable$log2FoldChange)-0.5), max(writeTable$log2FoldChange)+0.5))
     lgfcMax <- max(c(abs(min(writeTable$log2Foldchange;-0.9), max(writeTable)) +
plt <- ggplot(writeTable, aes(log2Foldchange; -log10(padj), colour=sigDeg)) +
plt <- ggplot(writeTable, aes(log2Foldchange; -log10(padj), colour=sigDeg)) +
plt <- ggplot(writeTable, aes(log2Foldchange; -log10(padj), colour=sigDeg)) +</pre>
          theme bw() +
          theme(panel.grid.major = element blank(), panel.grid.minor = element blank(), plot.title = element text(hjust = 0.5),
              text = element_text(size = 16, colour = 'black'), legend.position="none") +
     scale_color_manual[values=c("#999999",
outputVolPdf <- paste(c(outputPdf, '.volcan</pre>
                                                                .pdf'), collapse = '')
     ggsave(outputVolPdf, units = 'cm', height = 10, width = 10)
args <- commandArgs(trailingOnly = T</pre>
if (args[1] == '-h' | args[1] == '
     DESeq2(args[1], args[2], args[3], args[4], args[5])
```

Running DESeq2

\$Rscript DESeq2_update.R .readcount.txt label_table.txt
Bcell_background_vs_Tcell Tcell Bcell


[1] "Running DESeq2"
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
[1] "DESeq done"

```
-rw-rw-r-- 1 biguser biguser 64380 Dec 8 16:29 Bcell_background_vs_Tcellall.txt all 501 genes
-rw-rw-r-- 1 biguser biguser 8928 Dec 8 16:29 Bcell_background_vs_Tcell.maplot.pdf
-rw-rw-r-- 1 biguser biguser 49492 Dec 8 16:29 Bcell_background_vs_Tcellsig.txt significant DEGs
-rw-rw-r-- 1 biguser biguser 33708 Dec 8 16:29 Bcell_background_vs_Tcell.volcanoplot.pdf
```


```
setwd('~/')
read_count <- './readcount.txt'
label <- './label_table.txt'
output_prefix <- 'Bcell_background_vs_Tcell'
group_of_interest <- 'Tcell'
background_group <- 'Bcell'

DESeq2(read_count, label, output_prefix, group_of_interest, background_group)</pre>
```

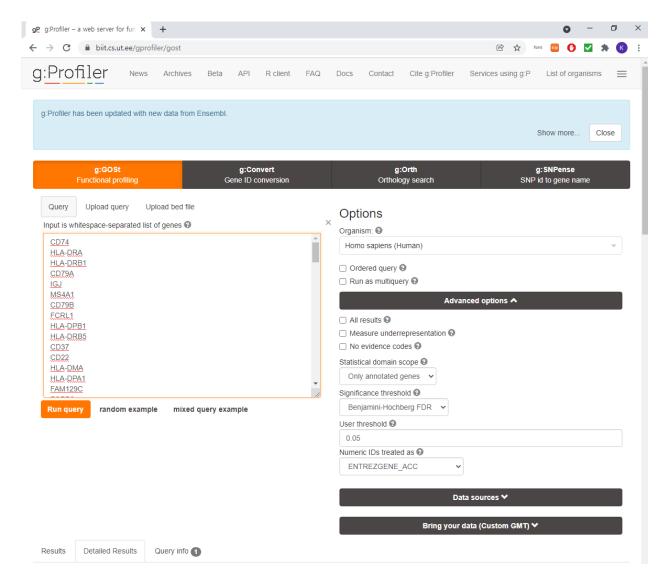
Output plots for DESeq2

Output files for DESeq2

Python script to extract significant DEGs

\$ python getSigGenes.py
Bcell_background_vs_Tcellall.txt
readcount.txt

```
#!/usr/bin/env python
 mport sys
deg result= sys.argv[1]
deg open= open(deg result, "r")
deg lineL= deg open.readlines()
deg open.close()
sig up= list()
sig down= list()
for i line in deg lineL[1:]: ## First line is header so skip it
         infoL= i line.strip().split("\t")
         geneid= infoL[0]
         try:
                  l2fc= float(infoL[2])
                  padj= float(infoL[6])
         except:
                  continue
         if padj > 0.05: ## padj cutoff is 0.05
                  continue
         if 12fc > 2.0:
                  sig up.append(geneid)
         elif l2fc < -2.0:
                  sig down.append(geneid)
         else:
                  pass
print("Number of genes highly expressed in T-cell :", len(sig_up))
print("Number of genes highly expressed in B-cell :", len(sig_down))
```


Python script to extract significant DEGs

```
countfile= sys.argv[2]
count open= open(countfile, "r")
count lineL= count open.readlines()
count open.close()
gene idsymbolD= dict()
for i line in count lineL[1:]: ## first line is header
        infoL= i line.strip().split("\t")
        geneid= infoL[0]
        genesymbol= infoL[1]
        gene idsymbolD[geneid]= genesymbol
## Function to write output gene list (gene symbol)
def writeOutput(outputname, genelist, gene idsymbolD):
        fileopen = open(outputname, "w")
        for i gene in genelist:
                geneid= i gene[0]
                genesymbol= gene idsymbolD[i gene]
                outputline= genesymbol+ "\n
                fileopen.write(outputline)
        fileopen.close()
## T-cell specific genes
tcell output=
writeOutput(tcell output, sig up, gene idsymbolD)
## B-cell specific genes
bcell output=
writeOutput(bcell output, sig down, gene idsymbolD)
```

List of genes (symbols) that are significantly, differentially expressed

```
8 16:46 bcell specific gene symbols.txt
-rw-rw-r-- 1 biguser biguser
                                                678 Dec
-rw-r--r-- 1 biguser biguser
                                             1517 Dec
                                                              8 16:47 getSigGenes.py
drwxr-xr-x 2 biguser biguser
                                              116 Dec
                                                              8 16/39 inputTables
                                                              8 16:46 tcell specific gene symbols.txt
-rw-rw-r-- 1 biguser biguser
                                               479 Dec
                                                                              IL7R
CCL5
                      CD74
                      HLA-DRA
                                                                               NKG7
                      HLA-DRB1
                                                                              S100A4
                      CD79A
                                                                              CD3E
                      IGJ
                                                                               CD3D
                      MS4A1
                                                                              GNLY
                      CD79B
                                                                              CD2
                      FCRL1
                                                                               SP0CK2
                      HLA-DPB1
                                                                               IL32
                      HLA-DRB5
                      CD37
                                                                               HCST
                      CD22
                                                                               GZMH
                      HLA-DMA
                                                                              SELPLG
                      HLA-DPA1
                                                                              ZAP70
                      FAM129C
                                                                              IFITM1
                      FCER2
                                                                              PRF1
                      CD19
                                                                               GZMA
                      BANK1
                                                                               CST7
                      TCL1A
                      IL4R
                                                                               GIMAP4
                                                                              GIMAP7
                      HLA-DQA2
                                                                               CD8A
                      HLA-DMB
                                                                               CTSW
                      BLK
                      IRF8
                                                                               TCF7
                                                                               KLRB1
                      FCRL2
                                                                               GZMM
                      VPREB3
                                                                               ANXA1
                      HLA-DOB1
                                                                               PIM1
                      CTSZ
                                                                              ARL4C
                      TNFRSF13C
                                                                               CD8B
                      RALGPS2
                                                                              CD5
                      SYK
                      AL0X5
                                                                              LEF1
                                                                              CD6
                      HLA-DOA
                                                                               GZMB
                      CYBB
                                                                              GIMAP6
                      MZB1
                                                                               SAMHD1
                      P2RX5
                                                                               TNFRSF25
                      FCRLA
                                                                               S100A11
                      STAP1
                                                                               MAL
                      HLA-DQA1
                                                                               CD247
                      RNASE6
                                                                               FGFBP2
                      HSH2D
                                                                               PLCG1
                                                                               CD7
                      BIRC3
                                                                               tcell specific gene symbols.txt
                      bcell_specific_gene_symbols.txt
```

Biological signatures associated with list of genes

