SESSION 12. FINDING GENE

Going ashore at CpG islands

CpG islands on genome ocean

- □ Human genome projects were completed back in 2003.
- □ What are the genetic information represented in the three billion bases ?
- Regions that give rise to RNAs that in turn encode proteins Protein-coding genes (1.5~2.0% for human) and non-coding genes. E.coli contains as much as 83% of coding sequence.
- □ Analogy to finding a needle in a haystack \rightarrow require a highly specific method
- **CpG** island well defines the transcription start site (TSS)

SN = TP / (TP+FN)SP = TN / (FP+TN)

T. F

+ TP FP

- FN TN

Eukaryotic transcription regulation

- **D** Transcription of genes takes place with the help of the RNA polymerases
 - **RNA** pol I, II, and III
 - **RNA** pol II is responsible for the transcription of PCGs, snRNA, microRNA, and lncRNA genes.
 - **RNA** pol I is responsible for the transcription of rRNAs
 - RNA pol III is responsible for the transcription of tRNA, 5s rRNA,... other ncRNAs

RNA Polymerase	Location Nucleolus	Main Products	α-Amanitin Sensitivity	
I		Precursor for 28S rRNA, 18S rRNA, and 5.8S rRNA	Resistant	
II	Nucleoplasm	Pre-mRNA and most snRNA	Very sensitive	
III	Nucleoplasm	Pre-tRNA, 5S rRNA, and other small RNAs	Moderately sensitive*	
Mitochondrial	Mitochondrion	Mitochondrial RNA	Resistant	
Chloroplast	Chloroplast	Chloroplast RNA	Resistant	

Table 21-1 Properties of Eukaryotic RNA Polymerases

*In mammals.

- Transcription factors are also required for initiation of RNA pol II.
 - General TF for initiation of transcription of all protein genes
 - Specific TF for regulation of subset of genes through enhancer or repressor

Cis-regulatory element of transcription

- □ Specific TF binding site (enhancer or repressor)
 - Ex, Oestrogen receptor recognizes a sequence "AGGTCANNNTGACCT"
 - Motif (k-mer) enrichment analysis in a specific set of genes
 - ChIP-seq (chromatin IP followed by sequencing)

- □ General TF binding site (core + proximal promoter) for identifying TSS
 - TATA box: 10~25% of all human genes have this TATA box, recognized by TFIID

CpG islands

- □ A more common feature of transcription initiation regions are CpG islands
- □ The regions close to the TSS of ~60-70% of all human genes.
- $\Box \quad CpG \rightarrow C + phosphodiester bond + G (dinucleotide)$
- □ CpG islands where the frequency of CpG sites is much higher than the background frequency of this dinucleotide
- □ C: 0.19 G:0.19 → CpG: 0.026 (observed) / 0.19X0.19=0.036 (expected)

CpG islands

- □ CpG → methylation on C → TpG mutation over evolution → depletion of CpG
- □ CpG near TSS → low methylation on C → high freq. of CpG
- The majority (70%) of CpG dinucleotides in a mammalian genome are methylated but the CpG near TSSs are typically not methylated.
- **Epigenetic inheritance:** the methylation pattern in a specific cell may be transmitted to the progeny cells.
- DNA methylation is also an important basis for genomic imprinting of either maternal or paternal origin.

Finding CpG islands

- □ Original definition of CpG islands (Gardiner-Garden and Frommer, 1987)
 - A region at least 200 bp in length with a GC content of at least 50% and an observed CpG/expected CpG ratio greater than 0.6.
 - Drawback with this definition → many Alu repeats of the human genome will be incorrectly predicted as CpG (~a million copy of Alu elements)
- □ Alternative definition of CpG islands (Takai and Jones 2002)

- Important criterion for optimizing specificity in methods of CpG island
- The total length of CpG island should be at least 500 nt
- The G+C content should be at least 55%
- The ratio b/w the frequency of observed CpG sites and the frequency of expected CpG sites should be at least 0.65.

$$\frac{f_{CpG}}{f_{C}f_{G}} = \frac{SN_{CpG}}{N_{C}N_{G}}$$

□ Alternative prediction using HMM (Durbin 2007)

Finding CpG islands

Alternative prediction using HMM (Durbin 2007)

An HMM for CpG islands

Emission probabilities are 0 or 1. E.g. $e_{G}(G) = 1$, $e_{G}(T) = 0$

See Durbin et al., Biological Sequence Analysis, Cambridge 1998

Viterbi Algorithm: An Example

сру.ру

#!/usr/bin/python

import re, sys							
filename = sys.argv[1]							
win = 500							
step = 10							
sea = ''	[jwnam@biglab-master Session11]\$ python cpg.py short.fa						
for line in open(filename). # a shorter sequence	pos	cpg	cg_rati	.o cg_obs_exp			
ior inte in open (irename). " a shorter sequence	250	0	36.2	0.133547008547			
if not re.search('>', line):	260	0	36.4	0.131492439185			
line = line.rstrip()	270	0	36.8	0.127567291746			
seg = seg + line	280	0	37.0	0.189729319504			
nrint 'nos\teng\teg ratio\teg obs evp!	290	0	37.4	0.18315018315			
prine posteepgteeg_racioteeg_obs_exp		0	36.6	0.191815856777			
<pre>for i in range(0, len(seq) - win, step): testseq = seq[i:i + win]</pre>		0	36.8	0.192604006163			
		0	37.0	0.192307692308			
c = float(testseq.count('C'))	330	0	37.2	0.192110655738			
<pre>g = float(testseq.count('G')) cg = float(testseq.count('CG'))</pre>		0	37.2	0.22014/340964			
		0	38.4	0.294568163073			
		0	38.2	0.296982656213			
cg_ratio = (c + g) * 100 / len(testseq)	370		30.2	0.250502030213			
cg_obs_exp = cg * len(testseq) / (c * g)							
pos = i + win / 2							
if cg_ratio >= 55 and cg_obs_exp >= 0.65:							
print pos, '\t', 1, '\t', cg_ratio, '\t', cg_obs_exp							
else:							
print pos, '\t', 0, '\t', cg_ratio, '\t', cg_o	bs_exp						

Visualization with R

plot the results of cpg island prediction

rgb[7], lwd = 2)

for (i in (1:lines)) {

draw rectangles for the exons

CpG island prediction

ADAMTS3

73500000

Scale up for the search

plot the results of CpG island prediction