Molecular Biology Laboratory

Bioinformatics and Genomics Lab.

1. DNA / RNA Sequence Alignment (BLAST) & Genome Browser

LÄB E

TA Junseob Han, Hyunseok Song

> Contact Junseob Han 010.2113.6458 hljs502@gmail.com

- 1. To know what is bioinformatics
- 2. To know the format of DNA & RNA data and gene annotation used in bioinformatics
- 3. To know how to visualize the data (UCSC Genome Browser)
- 4. To know how to analyze the sequence data of DNA or RNA (BLAST)

What is Bioinformatics?

- Molecular biology covers DNA, RNA, and protein
- Information on these molecules can be changed into mathematical and computerized data
 - DNA & RNA: Nucleotide sequence
 - Protein: Amino acid sequence
 - The interaction of each molecule can be changed to computerized or visualized data

Overview - Bioinformatics Core, Mayo Clinic Research

Alessandro Bertero et al., Nature, 2018

- Bioinformatics is the study that analyzes mathematical and computerized data to solve biological problems
 - Bioinformaticians use applied mathematics, data science, statistics, computer science, AI and et cetera for analyzing data and deducing biological meaning
- There are many tools or programs for analyzing data (BLAST, RNAfold, AlphaFold, etc.)
 - Each program has a different purpose or pros and cons, so we select the program carefully to match the analysis purpose and data type

Sequence Data

- DNA and RNA are composed of nucleotides, and proteins are composed of amino acids
 - DNA & RNA: Adenine (A), Thymine (T), Guanine (G), Cytosine (C), Uracil (U)
 - Proteins: Methionine (M), Valine (V), Cysteine (C) ...
- We can get the sequence data of these molecules with various sequencing methods
 - DNA sequencing, RNA sequencing, and protein sequencing

RNA-Seq: Basics, Applications and Protocol, Technology Networks, 2018

Sequence Data

- Using these sequence data, we can infer similarities and relations between different species
 - During evolution, genome sequence changing occurs
 - Some species which have common ancestors share a common sequence change
- There are many tools or programs for analyzing sequence data
 - These tools have unique algorithms
 - Each tool uses a different data type or format

Robert K. Wayne and Bridgett M. vonHoldt, Mammalian Genome, 2012

- Sequence data of DNA, RNA, and proteins are written in "FASTA" format generally
- "FASTA" format is consist of two parts: Header part & Sequence part
 - Header part has information on sequences like chromosomes, gene name, protein name, etc.
 - Sequence part has sequence literally
 - Header part and Sequence part is distinct by ">"
- DNA and RNA FASTA files have nucleotide sequences and protein FASTA files have amino acid sequences
 - DNA sequence contains exon and intron sequence, but RNA sequence contains exon sequence only

Header	→	>NC_000017.11:c7687490-7668421 Homo sapiens chromosome 17, GRCh38.p14 Primary Assembly
		CTCAAAAGTCTAGAGCCACCGTCCAGGGAGCAGGTAGCTGCTGGGCTCCGGGGACACTTTGCGTTCGGGC
		TGGGAGCGTGCTTTCCACGACGGTGACACGCTTCCCTGGATTGGGTAAGCTCCTGACTGA
		TCCTCTCTGAGTCACGGGCTCTCGGCTCCGTGTATTTTCAGCTCGGGAAAATCGCTGGGGGCTGGGGGTGG
		GGCAGTGGGGACTTAGCGAGTTTGGGGGTGAGTGGGATGGAAGCTTGGCTAGAGGGATCATCATAGGAGT
Soguonoo		TGCATTGTTGGGAGACCTGGGTGTAGATGATGGGGGATGTTAGGACCATCCGAACTCAAAGTTGAACGCCT
Sequence		AGGCAGAGGAGTGGAGCTTTGGGGAACCTTGAGCCGGCCTAAAGCGTACTTCTTTGCACATCCACCCGGT
		GCTGGGCGTAGGGAATCCCTGAAATAAAAGATGCACAAAGCATTGAGGTCTGAGACTTTTGGATCTCGAA
		ACATTGAGAACTCATAGCTGTATATTTTAGAGCCCATGGCATCCTAGTGAAAACTGGGGCTCCATTCCGA
		AATGATCATTTGGGGGGGGAGCCCGAGCCCAAGCTGCTAAGGTCCCACAACTTCCGGACCTTTGTCCTT
		CCTGGAGCGATCTTTCCAGGCAGCCCCCGGCTCCGCTAGATGGAGAAAATCCAATTGAAGGCTGTCAGTC

Gene Structure

- Gene structure is divided into exon and intron
 - Exon: Part of a gene that transcripts to RNA
 - Intron: Part of a gene that connects exons
- Some transcripts come from the same gene but have different exon and intron structure
 - We called these transcripts "isoforms"
- Exon of mRNA is divided into coding DNA sequence (CDS) and untranslated region (UTR)
 - UTR is also divided into 5' UTR and 3' UTR depending on the relative position to transcript start site (TSS)

- All genes have structure and coordination (position) information, and gene annotation indicates this information
 - Symbol, gene id, coordination information (chromosome, start & end position, strand, etc.)
- Gene annotation is provided from various database
 - RefSeq, UCSC Genome Browser, Ensembl, GENCODE
- There are 3 common formats for gene annotation
 - Gene prediction format (genePred, refFlat)
 - General transfer format (GTF)
 - Browser extensible data (BED)

Gene Annotation - genePred & refFlat

- Gene prediction format (genePred, refFlat)
 - This format is provided from RefSeq database of NCBI
 - "genePred" and "refFlat" are almost the same but "genePred" format doesn't have a gene symbol column
- Example of "refFlat" format
 - Information about each gene or transcript is written in one row

1. C	Gene Symbo	ol	3. Chromosome			5. Transcription Start Position	on n	7. CDS Start Position		9. Number o Exons	f E	11. Exon End Position	
	0R4F29	NM 0010052	21 chr	1	+	367658	368597	367658	368597	71	367658,	368597,	
	0R4F3	NM 0010052	24 chr	1	+	367658	368597	367658	368597	71	367658,	368597,	
	0R4F16	NM 0010052	77 chr	1	+	367658	368597	367658	368597	71	367658,	368597,	
	0R4F29	NM_0010052	21 chr	1	_	621095	622034	621095	622034	4 1	621095,	622034,	
		2. ID		4. \$	Strand	6	. Transcrip End Posit	otion ion	8. CDS End Posi	S tion	10. Exon Start Positio	n	

• If the strand is "-" like OR4F29, the start position (5, 7, 10 columns) indicates the end position and the end position (6, 8, 11 column) indicate the start position

- Gene transfer format (GTF)
 - This format is provided from Ensembl, GENCODE database and this format is commonly used
- Example of "GTF" format
 - Information of each gene or transcript is written in multi rows

1. C	hromosome	e 3	B. Feature	5.	End Positic	on	7. Strand		9. Attribute
	chrl	HAVANA	gene	65419	71585		+		gene_id "ENSG00000186092.6_5"; g@
	chrl	HAVANA	transc	ript	65419	71585	j .	+	. gene_id "ENSG00000186092.
	chr1	HAVANA	exon	65419	65433		+		gene_id "ENSG00000186092.6_5"; ti
	chr1	HAVANA	UTR	65419	65433		+		gene_id "ENSG00000186092.6_5"; ti
		2. Source	4	. Start Posit	ion	6. Score	е	8. Frame	

- Attribute column has various information like gene id, transcript id, symbol, gene type etc.
- Generally, Score and Frame columns are not used
 - Score: this column mean the probability that the information of row is real
 - Frame: If feature is CDS, this column mean start position's codon frame

- Browser extensible data (BED)
 - This format is used for showing gene information but it can be used for showing sequencing read information too
- Example of "BED" format
 - Information about each gene or transcript is written in one row

1. Chr	omosor	me 3. E	ind Posi	tion	5. Score	St	7. CDS art Positic	9. l n for \	RGE /isua	3 Code alization	11. Size of each Exons	
	chr1	320161	321056	ENST00000432964.1	Θ	+	320161	320161	0	3	492,58,25,	0,719,870,
	chrl	320161	324461	ENST00000423728.1	Θ	+	320161	320161	0	3	492,58,23,	0,4126,4277,
	chrl	320334	322097	ENST00000601486.1	Θ	+	320334	320334	0	4	319,58,259,60,	0,546,697,1703,
	chr1	320880	322203	ENST00000599771.2	Θ	+	320880	320880	0	3	58,233,166,	0,151,1157,
	chr1	322077	342806	ENST00000455464.2	Θ	+	322077	322077	0	3	151,169,415,	0,12051,20314,
	chr1	322671	324955	ENST00000419160.3	Θ	+	322671	322671	0	2	402,205,	0,2079,
	chrl	323860	334505	ENST00000601814.1	Θ	+	323860	323860	0	3	200,58,377,	0,427,10268,
	2. Start Position		4. ID		6. Strand	En	8. CDS Id Posit	ion	10. Numl Exon	ber of s	12. Start Position of each Exons	

- "BED" format doesn't always have 12 columns
 - The minimum column number is 4, and the file format is named by column number (BED4 ~ BED12)

- UCSC genome browser is a web-based tool used for visualizing genome data easily
 - Search "UCSC genome browser" in google or use the hyperlink <u>https://genome.ucsc.edu</u>
- We can find specific regions, genome structure, expression patterns, chromatin accessible regions, and other information from this tool
- Hover a mouse pointer on "Genomes" and select species, and then we can show visualized information

Basic Local Alignment Search Tool - BLAST

- "BLAST" is the program used for comparing multiple sequences and finding local alignment region
 - Local alignment region: Similar sequence region in two compared sequence
 - Search "BLAST" in google or use the hyperlink <u>https://blast.ncbi.nlm.nih.gov/Blast.cgi</u>
- We can use "BLAST" to search sequences from the genome database or to compare two sequences
 - Query: Input sequence for comparing
 - Subject: Matched sequence with query sequence in database or input sequence

- There are 4 tools in BLAST
 - BLASTN: Compare nucleotide sequence (query) and nucleotide sequence (subject)
 - BLASTP: Compare amino acid sequence (query) and amino acid sequence (subject)
 - BLASTX: Compare nucleotide sequence (query) and amino acid sequence (subject)
 - TBLASTN: Compare amino acid sequence (query) and nucleotide sequence (subject)

- 1. Practice how to use UCSC Genome Browser
 - Access the UCSC Genome Browser and find the human insulin gene
 - Make custom gene annotation and visualize
- 2. Practice how to get sequence data and how to use BLASTN
 - Find GFP gene sequence in NCBI database and align the sequence
 - Find human and pig insulin gene sequences in NCBI database and compare two sequence