SESSION 4. HUMAN DISEASE

When DNA sequences are toxic

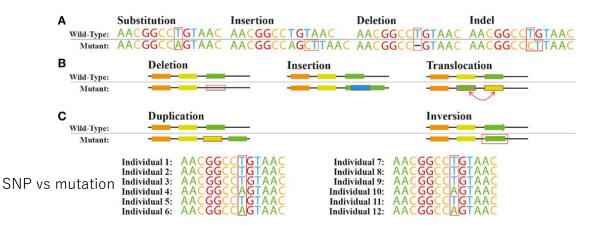
Inherited vs non-inherited genetic diseases

<u>Inherited disease</u> – The Majority are Mendelian diseases (+ Germline or *De novo* mutation) <u>Non-inherited disease</u> – Somatic mutations

Genetic vs Epigenetic changes

- Genetic change: with DNA change
- Epigenetic change: without DNA change

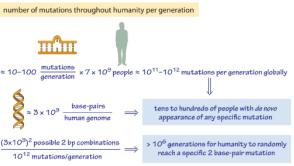
DNA changes often give rise to diseases.


Epigenetic changes could cause diseases

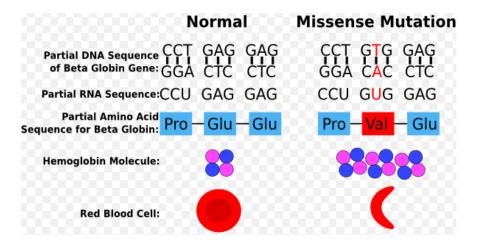
DNA alterations – local and largescale changes

- Local changes
 - Single nucleotide variations (SNVs)
 - Insertion + Deletion (indels)

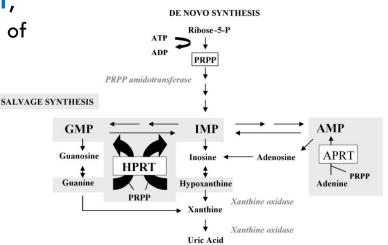
Largescale rearrangement


- Inter/intra chromosomal translocation
- Inversion
- Large insertion/deletion
- Duplication

Mutation rate during replication

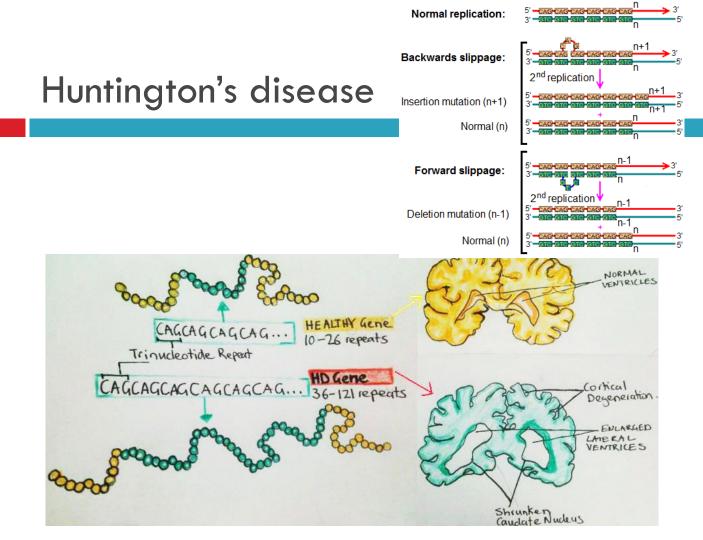

organism	mutations/ base pair/ replication	mutations/ base pair/ generation	mutations/ genome/ replication	BNID	
		multicellular			
human H. sapiens	10 ⁻¹⁰	1–4x10 ^{–8} (mitochondria: 3x10 ^{–5})	0.2-1	105813, 100417, 105095, 108040, 109959, 105813, 110292, 111227, 111228	
mouse M. musculus	2x10 ⁻¹⁰	10 ⁻⁸	0.5	100315, 106792,	100320
D. melanogaster	3x10 ⁻¹⁰	10 ⁻⁸	0.06	100365, 106793,	100370
C. elegans	10 ⁻¹⁰ -10 ⁻¹⁰	10 ⁻⁸	0.02-0.2	100290, 100287, 103520, 107886	109959,
unicellular					
bread mold N. crassa	10 ⁻¹⁰		0.003	100355, 100359, 106747	
budding yeast	10 ⁻¹⁰ -10 ⁻⁹		0.003	100458, 100457, 109959, 110018	
E. coli	10 ⁻¹⁰ -10 ⁻⁹		0.0005-0.005	106748, 100269,	100263
		DNA viruses			
bacteriophage T2 & T4	2x10 ⁻⁸		0.004	103918, 103918	number of muta
bacteriophage lambda	10 ⁻⁷		0.004	100222, 10577(
bacteriophage M13		10 ⁻⁶	0.005	106788	
RNA viruses					π
bacteriophage Qβ		10 ⁻³	7	106762	
poliovirus		10 ⁻⁴	1	106760	$\approx 10-100 \frac{muta}{generation}$
vesicular stomatitis virus		3x10 ⁻⁴	4	106760	gene
influenza A		10 ⁻⁵	1	106760	6
RNA retroviruses					≈ 3 × 10
spleen necrosis virus	2x10 ⁻⁵		0.2	106762	×
moloney murine leukemia virus		4x10 ⁻⁶	0.03	106760	(3x10 ⁹) ² possibl
rous sarcoma virus		5x10 ⁻⁵	0.4	106762	10 ¹² mutatio

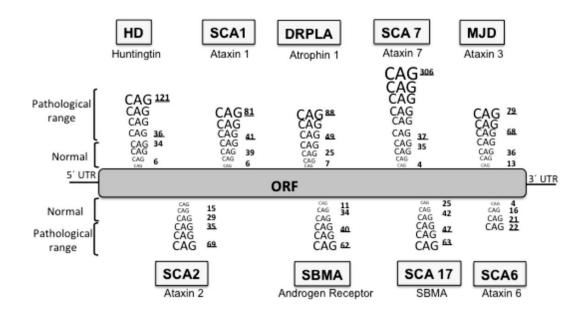
- DNA polymerase, its proof-reading, and base-pairing affinity give a 10⁻⁸ error per bp
- □ DNA repair enzymes fix 99% of the errors \rightarrow 10⁻¹⁰ error per bp


A classic example of point mutation is sicklecell anemia

- Point mutation (GAG:Glu→GUG:Val) affects one of the polypeptide chains of beta-globlin.
- 1% of the population in Western Africa have the sicklecell gene in hetero-type that protects against malaria.

Rare disease: Lesch- Nyhan syndrome (LNS)


- A disease with a neurological symptoms
- Resulted by mutations in the gene encoding HPRT, leading to accumulation of Uric acid in body.


Huntington's disease

- The disease was first discovered in 1841 by Charles Oscar Water
- The responsible gene, huntingtin, was first reported in1993
- Unfortunately, we still don't know the function of the protein in cell.
- The protein includes a region of repeated glutamine (polyQ region)

- Normally, less than 26 Qs but in rare cases, greater than 36, giving rise to Hungtington's disease.
- The polyQ stimulates the protein aggregation.
- Caused by expansion of short repeats (CAG)
- Replication slippage may cause the expansion of the repeats.

Other CAG repeat-related genes

find_cag_short.py

!/usr/bin/python

```
import re
```

```
myid = 'the title is short test sequence'
myseq = 'CGGATACTGGGGACTAAGCAGCAGCAGCAGCAGCAGCAGCAGTTT'
find_cag_repeat(myid, myseq)
```

FASTA file
>geneID1
atatacacacatacccacagcagcag
>geneID2
acagagacagcagcagcagcagacag

find_cag.py

import re

/usr/bin/python

```
def find cag repeat(id, seq):
    if re.search('CAG', seq):
        match = re.search('((CAG) \{6, \})', seq)
        if match:
            length = len(match.group(1)) # the string matched within
                                         # the outer parentheses is stored
                                           # in memory and recalled
            id = id[0:20]
            print id, '\t', 'repeat length', length
id = ''
seg = ''
for line in open('refseq human'):
    line = line.rstrip()
    if re.search('^>', line):
        if id != '':
            find cag repeat(id, seg)
        id = line
        seg = ''
    else:
        seq += line
```

Identifying mRNAs with CAG repeats

Regular expression

 (CAG){6}
 (CAG){6,9}
 (CAG){6,}
 (CAG)*
 (CAG)+

Match group
 '((CAG){6,})'
 The match within the outer parenthesis is stored.
 match.group(1)

'((CAG){6,})(.*)(.)\$' → match.group(1), match.group(2), match.group(3)

Function : y = f(x)

def function_name(arg1, arg2):

ans=0
for i in xrange(int(arg1), int(arg2)): ans+=1
return ans

print function_name(10, 20)

[jwnam@biglab-master Session4]\$ python function_test.py
10

Write standard output and pipe

python function_test.py >test.out

 \rightarrow Write a standard output of the python script into a file 'test.out'

```
python function_test.py |wc
```

```
[jwnam@biglab-master Session4]$ python function_test.py |wc 1 1 3
```

#!/usr/bin/python

import re

```
find._cag.py
```

```
def find cag repeat(id, seg):
                       if re.search('CAG', seq):
                           match = re.search('((CAG) \{6,\})', seg)
                          if match:
                              length = len(match.group(1)) # the string matched within
                                                      # the outer parentheses is stored
                                                        # in memory and recalled
                              id = id[0:20]
                              print id, '\t', 'repeat length', length
                    id = ''
                    seg = ''
                    for line in open('refseq human.txt'):
                       line = line.rstrip()
                       if re.search('^>', line):
                           if id != '':
                              find cag repeat(id, seq)
                           id = line
                           seg = ''
                       else:
                           seg += line
[jwnam@biglab-master Session4]$ python find cag.py
>gi|157151758|ref|NM
                                repeat length 36
>gi|116875847|ref|NM
                                repeat length 18
>gi|223646108|ref|NM
                                repeat length 39
>gi|114431247|ref|NM
                                repeat length 33
>gi|125346191|ref|NM
                                repeat length 27
>gi|154350223|ref|NM
                                repeat length 21
>gi|157168352|ref|NM
                                repeat length 18
>gi|154350245|ref|NM
                                repeat length 21
>qi|209862781|ref|NM
                                repeat length 27
```