BIOINFORMATICS SESSION 13. PRACTICE

2023-11-27

Finding genes: In the world of snurps

RNA splicing and it's sequence features

https://en.wikipedia.org/wiki/RNA_splicing http://www.cureffi.org/2015/10/09/is-prnp-mrna-alternatively-spliced/

Identification of splice sites with a PSSM

	1	2	3	4	5	6	7	8	9			1	2	3	4	5	6	7	8	9
S1	С	А	G	G	Т	А	G	G	G		Α	3	5	2	0	0	6	7	1	1
S2	С	А	G	G	Т	Т	А	С	А		Т	0	2	1	0	10	1	1	1	5
S3	А	А	G	G	Т	А	Т	G	Т		С	4	1	0	0	0	0	0	2	2
S4	G	А	G	G	Т	G	А	G	С	Frequency	G	3	2	7	10	0	3	2	6	2
S5	G	А	G	G	Т	А	А	А	С	, ,		•								
S6	А	G	Α	G	Т	А	А	G	G							D	COUL	loco	unt	⊥ 1
S7	С	G	G	G	Т	G	G	G	Т								JCut	1000	unc	
S7 S8	C G	G T	G G	G G	T T	G G	G A	G T	T T				_							
	-	G T C	-	-	T T T	-	_	G T C	T T T			1	2	3	4	5	6	7	8	9
S8	G A	G T C T	G	G	T T T T	G	A	G T C G	T T T T		A	1	2	3	4			7 8		
S8 S9	G A	G T C T	G	G G	T T	G A	A A	T C	T T T T		A T	1 4 1	_	_	4 1 1			7	8	9
S8 S9	G A	G T C T	G	G G	T T	G A	A A	T C	T T T T			1 4 1 5	6	3	4 1 1 1	5 1	6 7	7	8	9

Identification of splice sites with a PSSM

Basic Shell Commands

\$ cd [User_Folder]
\$ mkdir session13
\$ cd session13

\$cp /home/biguser/tutor/session13/splice5.txt .
\$less splice5.txt

CAGGTAGGG CAGGTAACA AAGGTAAGT GAGGTGAGC GAGGTAAAC AAAGTAAGG

```
$ vi make_matrix5.py
```

```
1 import sys, math
 2
 3 splice5 = sys.argv[1] #splice5.txt
 4 number of sequences = 0
 5
 6 for line in open(splice5):
 7
       line = line.rstrip()
       if number of sequences == 0:
 8
 9
           msa matrix = [[]]
10
       if number of sequences > 0:
11
           msa_matrix.append([])
12
       for j in range(0,9):
13
           msa matrix[number of sequences].append(line[j])
14
       number of sequences += 1
15
16 print(msa matrix)
```

\$ python make_matrix5.py splice5.txt

[biguser@R440 session13]\$ python make_matrix5.py splice5.txt [['C', 'A', 'G', 'G', 'T', 'A', 'G', 'G', 'G'], ['C', 'A', 'G', 'G', 'T', 'A', 'A', 'C', 'A'], ['A', 'A', 'G', 'G', 'T', 'A', 'A', 'G', 'T'], ['G', 'A', 'G', 'G', 'T', 'G', 'A', 'G', 'C'], ['G', 'A', 'G', 'G', 'T', 'A', 'A', 'A', 'C'], ['A', 'A', 'A' , 'G', 'T', 'A', 'A', 'G', 'G']]

1	2	3	4	5	6	7	8	9							
С	А	G	G	Т	А	G	G	G							
С	А	G	G	Т	А	А	С	А							
Α	А	G	G	Т	А	А	G	Т							
G	А	G	G	Т	G	А	G	С							
G	А	G	G	Т	А	А	А	С							
Α	А	А	G	Т	А	А	G	G							

```
1 bases = ['A', 'T', 'C', 'G']
 2 pssm = [[]]
 3
 4 for i in range(0, 4):
      if i > 0:
 5
 6
           pssm.append([])
 7
      for j in range(0, 9):
 8
           pssm[i].append(1.0) #pseudocount
 9
           for k in range(0, number_of_sequences):
10
               if msa_matrix[k][j] == bases[i]:
11
                   pssm[i][j] += 1
12 print(pssm)
```

\$ python make_matrix5.py splice5.txt

[biguser@R440 session13]\$ python make_matrix5.py splice5.txt
[[3.0, 7.0, 2.0, 1.0, 1.0, 6.0, 6.0, 2.0, 2.0], [1.0, 1.0, 1.0, 1.0, 7.0, 1.0, 1.0, 1.0, 1.0, 2.0], [3.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0], [3.0, 1.0, 6.0, 7.0, 1.0, 2.0, 2.0, 5.0, 3.0]]

	1	2	3	4	5	6	7	8	9
Α	3	7	2	1	1	6	6	2	2
Т	1	1	1	1	7	1	1	1	2
С	3	1	1	1	1	1	1	2	3
G	3	1	6	7	1	2	2	5	3

$$log_{2}(\frac{Actual \ probability \ of \ nucleotide \ at \ position \ J}{Expected \ probability \ of \ nucleotide \ at \ position \ J}) = log_{2}(\frac{Actual \ probability}{0.25}) = log_{2}(Actual \ probability^{*}4)$$

Syntax

math.log(x, base)

Parameter Values

Parameter	Description
x	Required. Specifies the value to calculate the logarithm for. If the value is 0 or a negative number, it returns a ValueError. If the value is not a number, it returns a TypeError
base	Optional. The logarithmic base to use. Default is 'e'

$$\frac{\log B}{\log A} = \log AB$$

\$ python make_matrix5.py splice5.txt

[biguser@R440 session13]\$ python make_matrix5.py splice5.txt
0.26 1.49 -0.32 -1.32 -1.32 1.26 1.26 -0.32 -0.32
-1.32 -1.32 -1.32 -1.32 1.49 -1.32 -1.32 -1.32 -0.32
0.26 -1.32 -1.32 -1.32 -1.32 -1.32 -1.32 -0.32 0.26
0.26 -1.32 1.26 1.49 -1.32 -0.32 -0.32 1.0 0.26

	1	2	3	4	5	6	7	8	9
Α	0.26	1.49	-0.32	-1.32	-1.32	1.26	1.26	-0.32	-0.32
Т	-1.32	-1.32	-1.32	-1.32	1.49	-1.32	-1.32	-1.32	-0.32
С	0.26	-1.32	-1.32	-1.32	-1.32	-1.32	-1.32	-0.32	0.26
G	0.26	-1.32	1.26	1.49	-1.32	-0.32	-0.32	1.0	0.26

\$ python make_matrix5.py splice5.txt > matrix5.txt

Scoring with a PSSM

\$ cp /home/biguser/tutor/Week13/session13/amyloid.fa .
\$ less amyloid.fa

Scoring with a PSSM

\$ vi score5.py

```
1 # score5.py
 3 import sys, re
 4
 5 matrix5 = sys.argv[1] #matrix5.txt
 6 amyloid = sys.argv[2] #amyloid.fa
 8i = 0
 9
10 for line in open(matrix5):
       line = line.rstrip()
11
12
       if i == 0:
           pssm = [[]]
14
       if i > 0:
15
           pssm.append([])
16
       col = line.split()
       for j in range(0, 9):
17
18
           pssm[i].append(float(col[j]))
19
       i += 1
20
21 sea = ''
22 for line in open(amyloid):
       if not re.search('>', line):
23
24
           line = line.rstrip()
           seq += line
```

```
27 print('pos\tscore') # print header
28
29 seg = seg.upper() # covert the sequence to upper case letters
30 bases = ['A', 'T', 'C', 'G']
32 for k in range(0, len(seq) -8):
      test = seq[k:k+9]
      score = 0
      for j in range(0, 9):
          base = test[j]
37
          for b in range(0, 4):
38
               if bases[b] == base:
                   score += pssm[b][j]
39
      score = 2 ** score # convert the log2 to real values, ** : exponential operator
40
      pos = k + 3 \# print the position next to the exon-intron junction
42
43
      print(pos, '\t', score)
```

Scoring with a PSSM

\$ python score5.py matrix5.txt amyloid.fa

[biguse	er@R440	<pre>session13]\$</pre>	python	score5.py	<pre>matrix5.txt</pre>	amyloid.fa
pos	score					
3	0.004	4742948767168	3147			
4	0.133	3046272806669	997			
5	0.018	3971795068672	2588			
6	0.010	663078410083	3736			
7	0.00	792155843585	9595			
8	0.022	2250784306204	4228			
9	0.312	2082637225402	29			
10	0.002	2371474383584	4075			
11	0.150	504131861270	15			
12	0.003	3172860923260	65435			

\$ python score5.py matrix5.txt amyloid.fa > score5.txt

Visualization with R

- \$ cp /home/biguser/tutor/session13/score3.txt .
- \$ cp /home/biguser/tutor/session13/amyloid.r .
- \$ vi amyloid.r

```
lines(c(268, 331), c(max_score/2, max_score/2), col = rqb[1],
rab <- c("#009E73", "#D55E00", "#0072B2")
                                                                                lw = 4
                                                                            lines(c(447, 1054), c(max_score/2, max_score/2), col = rab[1].
                                                                                1w = 4
par(mfrow = c(2, 1))
                                                                            data <- read.table("score3.txt", sep = "\t", header = TRUE)
data <- read.table("score5.txt", sep = "\t", header = TRUE)</pre>
                                                                            max score <- max data$score
# for the plot, we need to know about the sequence length
                                                                            plot(0, type = "n", lwd = 2, xlim = c(0, seqlen)
sealen <- max data$pos</pre>
                                                                                ylim = c(0, max_score * 1.1), xlab = "Position", ylab = "Score")
                                                                            legend(seglen * 0.7, max_score, "3prime", col = rqb[3],
max score <- max data$score
                                                                                1wd = 1
plot(0, type = "n", lwd = 2, xlim = c(0, seqlen),
                                                                            for (i in (1:sealen)) {
    ylim = c(0, max_score * 1.1), main = "Splice site scoring",
                                                                                lines(data pos[i], data pos[i]), c(0, data score[i]), col = rab[3]
    xlab = "Position", ylab = "Score")
                                                                                    1w = 2
legend(seqlen * 0.7, max_score, "5prime", col = rgb[2],
    1wd = 1
                                                                            lines(c(268, 331)), c(max_score/2, max_score/2), col = rab[1],
                                                                                1w = 4
                                                                            lines(c(447, 1054), c(max_score/2, max_score/2), col = rgb[1],
for (i in (1:sealen))
                                                                                lw = 4
    lines(c/data$pos[i], data$pos[i]), c(0, data$score[i]), col = rab[2].
        lw = 2
```

Visualization with R

\$ Rscript amyloid.r Open "Rplots.pdf"

Splice site scoring

Exercise

When you construct a PSSM, you divided observed frequency by expected frequency (M_{ij} = log(F_{ij}/F_{exp}), F_{exp} = 0.25). In real, however, those four bases (A, C, G, T) are not evenly distributed across a genome, which means that expected frequencies for each base are not equally 0.25 (1/4). It would be much more precise to use 'observed frequency across the matrix' (M_{ij} = log(F_{ij}/F_{exp}), F_{exp} = P_i/Total P, i=(A,C,G,T)). Correct a Python script 'make_matrix5.py' to calculate M_{ij} which is divided by 'observed frequency across matrix'.

	1	2	3	4	5	6	7	8	9							6			-
Α	0.29	0.43	0.21	0.07	0.07	0.50	0.57	0.14	0.14							0.62			
Т	0.07	0.21	0.14	0.07	0.79	0.14	0.14	0.14	0.43	Т	-1.20	-0.11	-0.51	-1.20	1.19	-0.51	-0.51	-0.51	0.59
С	0.36	0.14	0.07	0.07	0.07	0.07	0.07	0.21	0.21	С	0.92	0.00	-0.69	-0.69	-0.69	-0.69	-0.69	0.41	0.41
G	0.29	0.21	0.57	0.79	0.07	0.29	0.21	0.50	0.21	G	-0.20	-0.49	0.49	0.81	-1.59	-0.20	-0.49	0.36	-0.49

 $F_{exp} = P_i/Total P_i$

i=(A,C,G,T)

Log-odd: $log(F_{ij}/F_{exp})$

Exercise

