BIOINFORMATICS SESSION 13. PRACTICE

2023-11-27

Finding genes: In the world of snurps

RNA splicing and it's sequence features

https://en.wikipedia.org/wiki/RNA_splicing
http://www.cureffi.org/2015/10/09/is-prnp-mrna-alternatively-spliced/

Identification of splice sites with a PSSM

	1	2	3	4	5	6	7	8	9	
S1	C	A	G	G	T	A	G	G	G	
S2	C	A	G	G	T	T	A	C	A	
S3	A	A	G	G	T	A	T	G	T	
S4	G	A	G	G	T	G	A	G	C	Frequency
S5	G	A	G	G	T	A	A	A	C	
S6	A	G	A	G	T	A	A	G	G	
S7	C	G	G	G	T	G	G	G	T	
S8	G	T	G	G	T	G	A	T	T	
S9	A	C	A	G	T	A	A	C	T	
S10	C	T	T	G	T	A	A	G	T	

	1	2	3	4	5	6	7	8	9
A	3	5	2	0	0	6	7	1	1
T	0	2	1	0	10	1	1	1	5
C	4	1	0	0	0	0	0	2	2
G	3	2	7	10	0	3	2	6	2

Pseudocount +1

	1	2	3	4	5	6	7	8	9
A	4	6	3	1	1	7	8	2	2
T	1	3	2	1	11	2	2	2	6
C	5	2	1	1	1	1	1	3	3
G	4	3	8	11	1	4	3	7	3

Identification of splice sites with a PSSM

Basic Shell Commands

\$ cd [User_Folder]
\$ mkdir session13
\$ cd session13

Constructing a PSSM

\$cp /home/biguser/tutor/session13/splice5.txt .
\$less splice5.txt
CAGGTAGGG
CAGGTAACA
AAGGTAAGT GAGGTGAGC GAGGTAAAC AAAGTAAGG

Constructing a PSSM

\$ vi make_matrix5.py

```
1 import sys, math
2
3 splice5 = sys.argv[1] #splice5.txt
4 number_of_sequences = 0
5
6 for line in open(splice5):
7 line = line.rstrip()
8 if number_of_sequences == 0:
9 msa_matrix = [[]]
10 if number_of_sequences > 0:
11 msa_matrix.append([])
12 for j in range(0,9):
13
14 number_of_sequences += 1
1 5
16 print(msa_matrix)
```


Constructing a PSSM

\$ python make_matrix5.py splice5.txt

101								
1	2	3	4	5	6	7	8	9
C	A	G	G	T	A	G	G	G
C	A	G	G	T	A	A	C	A
A	A	G	G	T	A	A	G	T
G	A	G	G	T	G	A	G	C
G	A	G	G	T	A	A	A	C
A	A	A	G	T	A	A	G	G

Constructing a PSSM

```
1 bases = ['A', 'T', 'C', 'G']
2 pssm = [[]]
3
4 for i in range(0, 4):
5 if i > 0:
6 pssm.append([])
7 for j in range(0, 9):
pssm[i].append(1.0) #pseudocount
for k in range(0, number_of_sequences):
if msa_matrix[k][j] == bases[i]:
pssm[i][j] += 1
12 print(pssm)
```


Constructing a PSSM

\$ python make_matrix5.py splice5.txt

\square

	1	2	3	4	5	6	7	8	9
A	3	7	2	1	1	6	6	2	2
T	1	1	1	1	7	1	1	1	2
C	3	1	1	1	1	1	1	2	3
G	3	1	6	7	1	2	2	5	3

Constructing a PSSM

```
1 for i in range(0, 4):
2 for j in range(0, 9):
4
5
```

$$
\begin{aligned}
& \log _{2}\left(\frac{\text { Actual probability of nucleotide at position } J}{\text { Expected probability of nucleotide at position } J}\right)= \\
& \log _{2}\left(\frac{\text { Actual probability }}{0.25}\right)=\log _{2}(\text { Actual probability* } 4)
\end{aligned}
$$

Syntax

$$
\text { math. } \log (x \text {, base })
$$

Parameter Values

Constructing a PSSM

\$ python make_matrix5.py splice5.txt
[biguser@R440 session13]\$ python make_matrix5.py splice5.txt $0.261 .49-0.32-1.32-1.321 .261 .26^{-}-0.32-0.32$
$-1.32-1.32-1.32-1.321 .49-1.32-1.32-1.32-0.32$
$0.26-1.32-1.32-1.32-1.32-1.32-1.32-0.32 \quad 0.26$
$\begin{array}{llllllllllll}0.26 & -1.32 & 1.26 & 1.49 & -1.32 & -0.32 & -0.32 & 1.0 & 0.26\end{array}$

	1	2	3	4	5	6	7	8	9
A	0.26	1.49	-0.32	-1.32	-1.32	1.26	1.26	-0.32	-0.32
T	-1.32	-1.32	-1.32	-1.32	1.49	-1.32	-1.32	-1.32	-0.32
C	0.26	-1.32	-1.32	-1.32	-1.32	-1.32	-1.32	-0.32	0.26
G	0.26	-1.32	1.26	1.49	-1.32	-0.32	-0.32	1.0	0.26

\$ python make_matrix5.py splice5.txt > matrix5.txt

Scoring with a PSSM

```
$ cp /home/biguser/tutor/Week13/session13/amyloid.fa .
$ less amyloid.fa
```


Abstract

>amyloid agccatcacttgtctctaataaataactcccattgattttccagctcagggctcaccact ccttaccgtaagcgcaggaggagactggaaaatcactcacatattattggtgctcttcct cccccatcctcacccaaggtgcatataaaccctgaataacctgaagtctaagggcatgaa tatcagacgctagggggacagccactgtgttgtctgctaccctcatcctggtcactgctt ctgctataacagccctaggccaggaatatgaacaagccgctgctttggatctctgtcctc accagcctcctggaagcctttgctcacacaggtaaggaggtgaaggaatggtcaagaatc ataaagtgagaaaataggttgaagctgagatatcttttccctgcatttatactgaaggtc attatctttctttctttatcccgcagacctcagtgggaaggtgtttgtatttcctagaga

Scoring with a PSSM

\$ vi score5.py

```
1 # score5.py
2
3 import sys, re
4
5 matrix5 = sys.argv[1] #matrix5.txt
6 amyloid = sys.argv[2] #amyloid.fa
7
8i = 0
9
10 for line in open(matrix5):
11 line = line.rstrip()
12 if i == 0:
        pssm = [[]]
        if i > 0:
            pssm.append([])
    col = line.split()
    for j in range(0, 9): 43
        pssm[i].append(float(col[j]))
        i += 1
20
21 seq = '
22 for line in open(amyloid):
23 if not re.search('>', line):
25
            line = line.rstrip()
            seq += line
```

27 print('pos\tscore') \# print header
28
29 seq = seq.upper() \# covert the sequence to upper case letters
30 bases = ['A', 'T', 'C', 'G']
31
32 for k in range(0 , len(seq) -8):
33 test $=$ seq[k:k+9]
score = 0
for j in range(0,9):
base $=$ test[j]
for b in range(0,4):
if bases[b] == base:
score += pssm[b][j]
score $=2$ ** score \# convert the $\log 2$ to real values, ** : exponential operator
pos $=k+3$ \# print the position next to the exon-intron junction
print(pos, '\t', score)
43

Scoring with a PSSM

\$ python score5.py matrix5.txt amyloid.fa

```
[biguser@R440 session13]$ python score5.py matrix5.txt amyloid.fa
pos score
3 0.004742948767168147
4 0.13304627280666997
5 0.018971795068672588
6 0.016630784100833736
7 0.007921558435859595
8 0.022250784306204228
9 0.3120826372254029
10 0.002371474383584075
11 0.1560413186127015
12 0.0031728609232665435
```

\$ python score5.py matrix5.txt amyloid.fa > score5.txt

Visualization with R

```
$ cp /home/biguser/tutor/session13/score3.txt .
$ cp /home/biguser/tutor/session13/amyloid.r .
$ vi amyloid.r
```

```
# plot the results of splice site prediction
#define some coloure
rgb <- c("#009E73", "#D55E00", "#0072B2")
# make two graphs on top of each other
par mfrow = c(2, 1))
# First consider the 5' splice site prediction and read the
# output from
# the Perl cod
data <- read.table "score5.txt", sep = "\t", header = TRUE)
for the plot, we need to know about the sequence length
seqlen <- max data$pos
# for the plot we need to know about the maximum score
max_score <- max data$score)
7 make a plot for the 5' splice site data
plot(0, type = "n", lwd = 2, xlim = c(0, seqlen)
    ylim = c(0, max_score * 1.1), main = "Splice site scoring"
    xlab = "Position", ylab = "Score")
#print a legend
legend seqlen * 0.7, max_score, "5prime", col = rgb[2],
    lwd = 1)
# plot the splice site scores
for (i in (1:seqlen)
    lines(c data$pos [i], data$pos[i]), c(0, data$score[i]), col = rgb[2],
        lw = 2)
```


Visualization with R

\$ Rscript amyloid.r Open "Rplots.pdf"

Splice site scoring

Exercise

- When you construct a PSSM, you divided observed frequency by expected frequency ($\mathrm{M}_{\mathrm{ij}}=\log \left(F_{\mathrm{i}} / \mathrm{F}_{\text {exp }}\right), \mathrm{F}_{\text {exp }}=$ 0.25). In real, however, those four bases ($\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$) are not evenly distributed across a genome, which means that expected frequencies for each base are not equally 0.25 (1/4). It would be much more precise to use 'observed frequency across the matrix' $\left(\mathrm{M}_{\mathrm{ij}}=\log \left(F_{\mathrm{i} /} / F_{\text {exp }}\right), \mathrm{F}_{\text {exp }}=\mathrm{P}_{\mathrm{i}} /\right.$ Total P , $\mathrm{i}=(\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T})$). Correct a Python script 'make_matrix5.py' to calculate M_{ij} which is divided by 'observed frequency across matrix'.

	1	2	3	4	5	6	7	8	9
A	0.29	0.43	0.21	0.07	0.07	0.50	0.57	0.14	0.14
T	0.07	0.21	0.14	0.07	0.79	0.14	0.14	0.14	0.43
C	0.36	0.14	0.07	0.07	0.07	0.07	0.07	0.21	0.21
G	0.29	0.21	0.57	0.79	0.07	0.29	0.21	0.50	0.21
						Log-odd: $\log \left(\mathrm{F}_{\mathrm{ij}} / \mathrm{F}_{\text {exp }}\right)$			

	1	2	3	4	5	6	7	8	9
	0.06	0.46	-0.23	-1.33	-1.33	0.62	0.75	-0.64	-0.64
T	-1.20	-0.11	-0.51	-1.20	1.19	-0.51	-0.51	-0.51	0.59
C	0.92	0.00	-0.69	-0.69	-0.69	-0.69	-0.69	0.41	0.41
G	-0.20	-0.49	0.49	0.81	-1.59	-0.20	-0.49	0.36	-0.49
			$\mathrm{~F}_{\text {exp }}=\mathrm{P}_{\mathrm{i}} /$ Total P,						
$\mathrm{i}=(\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T})$									

Exercise

```
1 # exercise
2
3 for i in range(0, 4):
4 baseFreq = sum(pssm[i]) / (sum(pssm[0]) + sum(pssm[1]) + sum(pssm[2]) + sum(pssm[3]))
5 for j in range(0, 9):
6 pssm[i][j] = math.log(pssm[i][j] / (number_of_sequences + 4) / baseFreq) / math.log(2)
7 print(round(pssm[i][j], 2), end = ' ')
8 print('')
```

