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Abstract 
 

Reconstruction of High-confidence Transcriptome Maps and 
Pan-cancer Analysis of Long Noncoding RNAs 

 
Bo-Hyun You 

Department of Life Science 

Hanyang University 
 

Ever since the burst of high-throughput RNA sequencing (RNA-seq), there has 

been a huge stream of newly annotated genes. These novel genes are comprised 

mostly of non-coding RNAs, especially long non-coding RNA (lncRNA) genes, 

which have been shown to play critical roles in myriad of biological processes. 

Even though numerous coding and non-coding transcriptome maps have been 

introduced in recent years and helped researchers to find missing information in 

diverse cellular processes, they are still incomplete partly because they were 

mostly reconstructed based on RNA-seq reads that lack strand information (known 

as unstranded reads) and accurate gene boundary information. To improve the 

accuracy of transcriptome maps, I developed a high-performing transcriptome 

assembly pipeline, CAFE. CAFE predicts the directions of unstranded reads using 

the maximum likelihood estimation and refines gene boundaries by integrating 

information about transcription start sites and cleavage and polyadenylation sites. 

Applying CAFE to the transcriptomic data from the ENCODE Project enabled us to 

construct high-confidence transcriptome map, named BIGTranscriptome, which is 

comparable to the manually curated map. 
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To identify novel cancer-driving lncRNAs, I applied CAFE pipeline to RNA-seq 

datasets of ESCC patients from multiple cohorts (Korean, Chinese, and 

GTEx+TCGA cohorts) and constructed a comprehensive ESCC transcriptome. As 

a results, I annotated 1,924 novel lncRNAs and identified 113 commonly 

dysregulated lncRNAs in ESCCs. Six of the dysregulated lncRNAs were 

significantly associated with the clinical outcomes of ESCC patients and defined 

four ESCC subclasses with different prognoses. Among the six lncRNAs, we found 

a novel lncRNA which named as HERES (highly expressed lncRNAs in 

esophageal squamous cell carcinoma), promotes cell proliferation, migration, 

invasion, and colony formation in ESCC cell lines and tumor growth in xenograft 

models. HERES appears to be a trans-acting factor that regulates CACNA2D3, 

SFRP2, and CXXC4 simultaneously to activate Wnt signaling pathways through 

an interaction with EZH2 via its G-quadruple structure-like motif. 

Finally, applying CAFE pipeline to a collection of large-scale transcriptome data 

comprising more than 16,000 RNA-seq samples from the ENCODE Project, the 

Human BodyMap 2.0 Project, the CCLE Project, the TCGA Project, and the GTEx 

Project led to the creation of the most comprehensive and accurate tissue-/cancer-

specific transcriptome maps. Our integrative transcriptome encompasses 

numerous novel lncRNAs, including thousands of antisense lncRNAs and 

hundreds of tissue-/cancer-specific lncRNAs. 

As of conclusion, the CAFE pipeline and the resulting transcriptome maps will 

not only help to expand the universe of coding and non-coding genomes but also 

enable discovery of novel biomarkers and therapeutic target of value such as 

HERES in ESCC.
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Chapter 1. Introduction 
  With the invention of shotgun sequencing, the era of omics data begun, and it 

led to parallel analysis of the vast number of identified genes and discovery of 

thousands of novel genes (1-5). Large-scale high-throughput RNA sequencing 

(RNA-seq) data from the ENCODE Project were used to characterize highly 

complex, overlapping transcription units on both strands, revealing that more than 

60% of the human genome is reproducibly transcribed in at least two different cell 

types (4, 6). Intriguingly, a significant portion of these extensive transcription 

signals, mostly from intergenic regions, turned out to be unannotated. As 

comprehensive transcriptome maps essential for understanding of gene 

expression regulation in both coding and non-coding genomic regions (1, 3), the 

need to identify the unannotated transcriptome quality arose. Gene annotation 

projects, such as GENCODE (4), Human BodyMap 2.0 (7), MiTranscriptome (8), 

FANTOM CAT (9), and CHESS (10), have massively reconstructed whole 

transcriptomes by assembling large-scale RNA-seq data and have characterized 

transcriptome-wide non-coding RNAs (ncRNAs). 

Unknown transcripts can be identified via assembly of RNA-seq data by two 

approaches: the genome-guided approach (known as reference-based assembly) 

(11-16) and the de novo approach (16-22). Because the de novo approach 

assembles RNA-seq reads without a guide genome, it generally requires RNA-seq 

data with strand information (called stranded RNA-seq data). However, for the 

reference-based approach, the stranded RNA-seq data had been regarded as 

dispensable because the sense-orientation of some reads spanning exon-

junctions could be predicted based on the splicing signal. For that reason, most of 
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the largest sources for transcriptome data such as the ENCODE Project (5), the 

Cancer Cell Line Encyclopedia (CCLE) Project (23), the Genotype-Tissue 

Expression (GTEx) Project (24), and The Cancer Genome Atlas (TCGA) (25, 26) 

Consortium produced large-scale unstranded RNA-seq data without strand 

information. Following genome-wide gene annotation projects thus have 

proceeded using these unstranded data. For an instance, MiTranscriptome was 

built from 6,810 publicly available unstranded RNA-seq data from ENCODE, TCGA, 

and other studies (23). Unfortunately, transcriptome assembly using unstranded 

RNA-seq data often results in erroneous transcript models, including chimeras, 

particularly when there are convergent, divergent, or antisense overlaps between 

two genes (3, 27-30). Nevertheless, the re-use of publicly available big unstranded 

data with the stranded data could not only enhance detection of new transcripts 

but also reduce the generation of erroneous transcript models (29). 

RNA-seq-based transcriptome assembly is also challenged by the ambiguous 

ends of assembled transcripts (29, 31). Early methods roughly defined the 

transcription structures with the support of histone modification signals, such as 

H3K4me3 for activate promoters and H3K36me3 for active gene bodies (11, 32). 

Later, specialized RNA sequencing techniques, such as cap analysis gene 

expression by sequencing (CAGE-seq) (33-35) and poly(A) position profiling 

followed by sequencing (3P-seq) (27, 32), have been successfully applied to define 

the ends of transcripts at single base resolution. Determination of accurate gene 

boundaries through integrative analysis of the specialized RNA-seq data including 

CAGE-seq and 3P-seq would enable the appropriate functional studies of the novel 
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genes, especially regulatory non-coding genes that are expected to play significant 

roles in diverse biological processes. 

  The Wnt signaling pathway is a well-known, evolutionarily conserved pathway 

that plays important roles in embryonic development; it has also been widely 

implicated in numerous tumor malignancies (36-39). Wnt signaling can activate 

both β-catenin-dependent (canonical) and -independent (non-canonical) signal 

transduction cascades (38, 39). Canonical Wnt signaling results in translocation of 

the transcriptional activator β-catenin into the nucleus during embryonic 

development and cell differentiation (40). Constitutive activation of this pathway by 

various causes leads to developmental diseases and carcinogenesis (41). In 

contrast, noncanonical Wnt pathways are known to be transduced by Wnt polarity, 

Wnt-Ca2+, and Wnt-atypical protein kinase signaling, independent of β-catenin 

transcriptional activity (42). These pathways have also been reported to be 

independently involved in cancer development as well as embryonic development. 

In particular, abnormal intracellular levels of the second messenger Ca2+ promote 

the Wnt signaling pathway, which in turn promotes the development and 

progression of many types of cancers (43). 

Controlling Wnt signaling may be a useful strategy for curing cancers caused by 

aberrations in such signaling. The inhibition of either aberrant canonical or 

noncanonical Wnt signaling, however, has been shown to decrease progression in 

only a subset of cancers in a context-dependent manner (44). Because aberrations 

in Wnt signaling pathways result from various causes, such as mutations in 

different Wnt signaling-related genes, ligand overexpression, and dysregulation of 

regulators, targeting only the canonical Wnt signaling pathway might not be a 
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universal therapeutic approach for cancers. Thus, the simultaneous inhibition of 

aberrant canonical and noncanonical Wnt signaling pathways could be a promising 

approach for cancer therapy. 

  Esophageal squamous cell carcinoma (ESCC), a major histological type of 

primary esophageal cancer in east Asia and other developing countries, is 

associated with a very poor survival rate that is only 5-15% at five years (45, 46), 

mainly due to delayed diagnosis, a high rate of metastasis, and a lack of effective 

treatment strategies (45-47). Moreover, the benefits of curative surgery for 

advanced stages of ESCC are still unclear (46, 48), and although cisplatin-based 

chemotherapy is commonly used, the effects are inconsistent among individuals 

(46, 48). Despite ongoing trials with combination therapy, efforts to identify 

appropriate targets to improve the therapy for ESCC have been largely 

unsuccessful (49, 50). 

Long noncoding RNAs (lncRNAs), defined as transcripts longer than 200nt that 

do not code for functional proteins (51, 52). Further investigation of lncRNAs 

functions hinted that lncRNAs are a rather heterogeneous group of RNAs, with 

each individual exerting diverse roles in a wide range of biological process through 

different mode of actions (51-54). Because lncRNAs can modulate multiple targets 

at the transcriptional and posttranscriptional levels, lncRNAs tend to play functional 

roles in more than one biological pathway. Moreover, mounting evidence indicates 

that aberrant lncRNA expression, by modulating cancer-related pathways, can be 

responsible for cancer progression (55, 56). HOTAIR is a trans-acting lncRNA that 

promotes cancer progression via different pathways depending on the cancer type 

(57, 58). The most well-known mechanism of HOTAIR involved interactions with 
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PRC2 and LSD1 histone modification complexes to promote cancer metastasis 

through chromatin state reprogramming (57). 

To date, hundreds of lncRNAs have been reported to be dysregulated in cancers 

and tens of them have been associated with cancer progression. With respect to 

ESCC development, the function of a few lncRNAs, including LUCAT1 and CASC9, 

have been investigated via a candidate-gene approach (59, 60). Recently, a 

Chinese group performed RNA-seq on tissue from 15 paired ESCC patients and 

normal individuals and identified lncRNAs dysregulated in ESCCs (61). 

Furthermore, they described a lncRNA that affects cell proliferation and invasion in 

ESCC cell lines but did not pursue further to elucidate the mechanism of action. 

Thus, the identification of novel ESCC-driving lncRNAs and an investigation of their 

cancer-driving mechanisms have not been simultaneously carried out. 

Despite these findings that successfully describe the importance of lncRNAs, 

global investigation of lncRNAs via transcriptome reconstruction from large-scale 

RNA-seq data suffered from aforementioned difficulties, more so due to their low 

expression levels and condition-specific expression patterns. These particularities 

combined with the limited computational resource and large portion of unstranded 

data among public available datasets and hindered accurate annotation of 

lncRNAs. Numerous attempts to construct lncRNA maps from large collection of 

RNA-seq datasets, such as FANTOM CAT and CHESS annotations, relied heavily 

on reference annotations to avoid inaccurate transcript models rising from 

unstranded reads and overlooked novel lncRNA genes and isoforms. 

In Section 2, I will proceed to explain a high-performing transcriptome assembly 

pipeline, CAFE, which is designed to tackle the challenges associated with 
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construction by utilizing unstranded and stranded RNA-seq reads, and CAGE-seq 

and 3P-seq data. Section 3 describes a study of novel ESCC-driving lncRNA, 

HERES, from multi-cohort RNA-seq datasets, discovered using CAFE pipeline. 

Construction of high-confidence transcriptome maps and annotation of lncRNAs in 

pan-cancer from more than 16,000 RNA-seq samples comprising diverse types of 

tissue, cancer, and cell line is described in Section 4. Finally, the results are 

discussed in Section 5, followed by a list of references in Section 6 and 

supplementary information in the Supplementary Materials section.  
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2.1. Unstranded RNA-seq causes error-prone assembly 

2.1.1. Factors of transcriptome assembly quality 

To investigate the factors that affect quality of transcriptome assembly, we 

reconstructed 45 stranded and 32 unstranded assemblies from public available 

RNA-seq data from the ENCODE Project using Cufflinks (62). The resulting 

assemblies were evaluated based on the GENCODE v19 annotation. The 

evaluation was done by counting false negative (FN), false positive (FP), and true 

positive (TP) bases upon agreement between the reference and the resulting 

assembly at the base level. 

The recall (TP/(TP+FN)) of the resulting assemblies appeared to be simply 

correlated with the size of mapped reads up to about 100 million mapped reads 

but converged beyond that size (Fig. 1A), which suggests that many samples from 

the ENCODE Project still need more data to reach their maximum recall. On the 

other hand, the precision (TP/(TP+FP)) of the unstranded assemblies was much 

less than that of the stranded assemblies, regardless of the size of the mapped 

reads (Fig. 1B). This result indicates that stranded reads provide more accurate 

information for transcriptome assembly. 
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Figure 1. Important factors for quality of transcriptome assembly. (A-B) Recall (A) and 

precision (B) of stranded (orange diamond) and unstranded (blue diamond) assemblies 

constructed from ENCODE RNA-seq data are shown over the number of mapped reads. 
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2.1.2. Classification of erroneous transfrags 

To examine the nature and cause of the errors in unstranded assembly, we next 

sequenced both stranded and unstranded RNA-seq libraries that were 

simultaneously prepared in mouse embryonic stem (mES) cells. We also obtained 

a pair of publicly available stranded and unstranded RNA-seq datasets of human 

HeLa cells from the NCBI gene expression omnibus (GEO). These reads were 

mapped to reference genomes (hg19 for human and mm9 for mouse) using TopHat 

(63), and unstranded reads (~40 million mapped reads for HeLa cells and ~68 

million mapped reads for mESC) were assembled using Cufflinks. In total, 51,045 

and 48,509 transcript fragments (transfrags) whose full lengths were not examined 

were assembled from HeLa and mES cells, respectively. The resulting transfrags 

were divided into five groups based on their directions validated by stranded RNA-

seq signals: (1) correct, (2) incorrect (those with an RNA-seq signal on the opposite 

strand), (3) ambiguous (those with RNA-seq signals on both strands), (4) 

undetermined (those with no direction), and (5) unsupported (those with no 

stranded RNA-seq signals in either direction) (Fig. 2A). All transfrags in the correct 

group (24.24% for HeLa cells and 29.76% for mES cells) were multi-exonic (Figs. 

2B and C); this high accuracy was the result of exon-junction reads that define the 

direction of the resulting intron with the splice-signal ‘GU-AG’ at the ends of the 

intron (Fig. 2C). The remainder were regarded as problematic transfrags (75.76% 

for HeLa cells and 70.24% for mES cells). They displayed low accuracies and were 

placed in the incorrect (0.31% and 0.14%), ambiguous (33.13% and 38.79%), 

undetermined (39.52% and 31.03%), and unsupported (2.8% and 0.28%) groups 

(Figs. 2B and C). They appeared to be severely defective in their structures and/or 
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directions (Fig. 3), and the majority in the undetermined group were single-exonic 

transfrags (Fig. 2C). However, except for those in the unsupported group (Fig. 2A), 

the defective transfrags (72.96% for HeLa cells and 69.96% for mES cells) could 

be corrected using the guide of the matched, stranded RNA-seq data. 
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Figure 2. Five groups of transfrags assembled from unstranded RNA-seq. (A) 

Classification of transfrags assembled from unstranded RNA-seq data. Graphs on the top 

are signals from stranded RNA-seq data (blue is the signal in the forward direction and red 

is the signal in the reverse direction). (B) Shown are the percentages of transfrags belong 

to the five groups - correct (red), ambiguous (blue), undetermined (purple), incorrect (black), 
and unsupported (yellow) in HeLa and mES cells. (C) The precision (light blue) and recall 

(red) of the five groups compared to the reference protein-coding genes in HeLa (left top) 

and mES cells (left bottom). The number of multi-exonic (dark gray) and single-exonic (gray) 

transfrags are indicated in each group (right).  
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Figure 3. Problematic transfrags assembled from unstranded RNA-seq. (A-C) 

Examples of problematic transfrags belong to three groups - ambiguous (A), undetermined 

(B), and incorrect (C). Graphs are signals from unstranded RNA-seq data.  
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2.2. Prediction of the directions of unstranded reads 

2.2.1. K-ordered Markov chain (kMC) model for read direction 

To predict the direction of unstranded reads mapped to the genome, k-ordered 

Markov chain (kMC) models were trained with the directions of the k-nearest 

stranded reads relative to a target read. We built a training dataset including S 

base reads randomly selected from stranded reads mapped to genomes and their 

matched k-nearest reads. To acquire the k-nearest reads, we used a step-wise k-

nearest method, in which the read x"#$ nearest to a query read	 x"#& was first 

selected, then the read x"#' nearest to the current read x"#$ was selected, then 

the read x"#( nearest to the current read x"#' was selected, and so on. To train 

unbiased models, we used 10 million as S, a large enough sampling number that 

is proportional to the k (also proportional to the number of states and edges to 

train). Practically, 2 X K matrix M+ or M- for each emission value (+ and -) were 

constructed from the training data and each cell m*+,-  or m.+,-  in the matrix 

indicates the fraction of + or - direction of the jth-nearest read x"#-  when the 

emission value (direction) of the previous state is i. 
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2.2.2. Maximum likelihood estimation (MLE) of read direction 

  The direction of an unstranded read, r, was inferred from the trained kMC models 

given step-wise k-nearest stranded reads of a query unstranded read mapped to 

a genome locus using maximum likelihood estimation (MLE) as in the following 

equation.   

	𝐿0∗ = argmax
6∈{*,.}

:;𝑚+,-#"

"

$

=		 

where i is the direction of the kth-nearest read, L is a set of possible directions that 

are, and 𝐿0∗		is the maximum likelihood direction of the unstranded read r. Using the 

MLE, all maximum likelihood directions were predicted for all unstranded reads. If 

an unstranded read was paired-end, then its direction was determined differently, 

as follows. If a fragment of a paired-end read spanned an exon-junction, the 

direction of the read was directly determined by the splice signal without MLE. If 

the directions of two fragments of a paired-read were inconsistent, the direction 

with greater likelihood was chosen for the read. 
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2.2.3. Prediction of read directions using MLE 

To facilitate stranded assemblies with additional stranded reads, we predict the 

directions of unstranded RNA-seq reads using kMC models whose transition 

probabilities were estimated with the directions of a current read x and its k-nearest 

stranded reads, xk. In the prediction step, the direction of a read with an unknown 

direction, y, was determined using MLE (Fig. 4A). A read with a predicted direction 

(RPD) was treated as a pseudo-stranded read and was used in the downstream 

assembly. Performing systematic analyses while increasing k, we found the 

optimum to be k=3, a value at which the accuracy is maximized and the 

computational cost is minimized (Figs. 5A and B). Compared to a simple majority 

voting method with k-nearest stranded reads, kMC performed better as k increased 

(Figs. 5C and D). Thus, we predicted the directions of all unstranded RNA-seq data 

using the Markov chain model with the optimum k-order and assembled all 

stranded read-like RPDs. Compared to the original assembly (unstranded 

assembly), those that were re-assembled from RPDs (RPD assembly) were 

significantly improved by 9.3–10.7% in their precision without compromising their 

recall (Fig. 4B for HeLa cells and Fig. 4C for mES cells). For instance, unstranded 

reads from a genomic locus where LOC148413 and MRPL20 are convergently 

transcribed were assembled into an erroneous annotation but their RPDs led to 

correction of the erroneous gene structure (Fig. 4D). 

To test the general usage of the kMC model, we predicted the directions of 

unstranded reads from HeLa cells using the kMC model trained in mES cells, and 

vice versa. The species-mismatched models were comparable to the species-
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matched models (Fig. 6), suggesting that the kMC model can be generalized to 

other cell types and species. 
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Figure 4. Prediction of read directions using MLE. (A) Overview of kMC training and 

MLE of read direction. (Left) S base reads randomly sampled from stranded RNA-seq reads 

and their matched step-wise k-nearest reads (x"#$,	x"#',	x"#(,…) were used for training kMC. 

Blue arrows are reads in the forward (+) direction and red arrows are reads in the reverse 

(-) direction. (Right) Prediction of read direction using MLE. Step-wise k-nearest stranded 

reads (x"#$,	x"#',	x"#(,…) from a query unstranded read (black arrow) were extracted and 

used to calculate two likelihoods at (+) and (-). A direction with the maximum likelihood is 

finally assigned to the query read. (B-C) Accuracies of transcriptomes assembled with 

RPDs (k=3) and unstranded reads in HeLa (B) and mES cells (C). (D) An example of 
resulting transfrags re-assembled with RPDs. LOC148413 and MRPL20 are convergently 

overlapped at a locus where unstranded RNA-seq signals (black) are not separated but 

blue and red RPD signals are clearly separated in the forward and reverse directions, 

respectively. 
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Figure 5. Systematic analysis of MC k-order. (A-B) Accuracies of RPDs across different 

k-orders. The optimal k-order (dotted box) was set as the k at which the precision was 

maximized for HeLa (A) and mES cells (B). (C-D) Accuracies (F-score and recall) of RPDs 
by kMCs and k-nearest majority voting across different k values (from 1 to 10) for the 

antisense-overlapping loci in HeLa (C) and mES cells (D). 

 

 

Figure 6. Generality of the kMC model. (A-B) Comparisons of unstranded, species-

mismatched, and species-matched models. Accuracies of unstranded, species-

mismatched (by the kMC models trained in mES cells), and species-matched models (by 

the kMC models trained in HeLa cells) in HeLa cells (A) and vice versa (B). 

 

 

  



 20 

 

2.2.4. The benefits of expression quantification from RPDs 

The use of stranded RNA-seq data leads not only to better transcriptome 

assembly, but also in principle to better gene expression quantification. To test 

whether the expression quantification benefits from the prediction of strand 

information, the gene expression values were calculated with unstranded and 

corresponding RPDs, and then were compared to those calculated with stranded 

reads (Fig. 7). Overall, the unstranded reads over-estimated the expression level 

of genes in the loci with antisense-overlapping transcripts but RPDs corrected the 

over-estimation, leading to better correlation with those of stranded reads. 
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Figure 7. The expression quantification benefits from RPDs. (A-B) Comparisons of 

gene expression values (FPKM, log2) estimated by stranded (X-axis) and unstranded reads 

(Y-axis, left) or RPDs (Y-axis, right) in HeLa (A) and mES cells (B). The correlation 

coefficients were calculated with Pearson’s correlation between the X- and Y-axis values. 
The red dots indicate genes with antisense-overlapped genes.  
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2.3. Refining boundaries and finding new exon-junctions 

2.3.1. Updating exon-junctions 

Shallow sequencing depth and short read length often cause transcript 

fragmentation in transcriptome assembly, mainly due to missing exon-junction 

reads and discontinuity of read overlaps. To update exon-junction signals missed 

in the original assembly, all pairs of neighboring transfrags on the same strand 

within a distance ranging from 50 bp to the 99th percentile of the lengths of all 

known introns (50-265,006 bp for human and 50-240,764 bp for mouse) were re-

examined. The neighboring transfrags within a distance of 50 bp were combined. 

If more than two exon-junction reads in at least two samples were detected, the 

neighbored transfrags were connected by the junction. Otherwise, the gaps 

between two neighboring transfrags were further scrutinized to detect cis-splicing 

signals. The gaps including splice donor ‘GU’ and acceptor ‘AG’ signals, but not 

CAGE-seq or 3P-seq tags, between two neighboring transfrags were scanned by 

MaxEntScan (version 20040420) (64), which calculates entropy scores for splice 

donor and acceptor sites. If the maximum entropy scores of both the splice donor 

and acceptor sites were above 0.217, a cutoff used in previous studies (65), then 

the interspace between the ‘GU’ and ‘AG’ was regarded as an intron and the two 

transfrags were connected by the intron. 
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2.3.2. Refining TSSs and CPSs 

RNA-seq-based transcriptome assembly often results in imprecise transcript 

boundaries (Fig. 8). To annotate the accurate transcription start sites (TSSs) and 

cleavage and polyadenylation sites (CPSs), transfrags were updated by Cap 

analysis gene expression sequencing (CAGE-seq) (35) and poly(A) position 

profiling by sequencing (3P-seq) tags (66). The method for TSS identification from 

CAGE-seq tags was modified from the method for CPS identification from 3P-seq 

tags (66). Of the identified sites, those located in either the first exon or in the 3kb 

upstream region of a gene, without overlapping the upstream gene, were regarded 

as TSSs of the gene. Similarly, of the CPSs identified from 3P-seq tags, those 

assigned to either the 3’ UTR or the 5kb downstream region of a gene, without 

overlapping the downstream gene, were regarded as CPSs of the gene. After 

updating TSSs and CPSs, we removed all redundant transcripts or inclusive 

transfrags. 
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Figure 8. Erroneous transfrag boundaries. (A) Shown is an example of mis-assembly of 

PNPLA2 at its 5’ end, evident by CAGE-seq signals. (B) Shown is an example of mis-

assembly of UBE2J2 at its 3’ end, evident by 3P-seq signals. 
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2.3.3. Full-length transcripts with updated exon-junctions and boundaries 

To improve the integrity of the assembled transcriptome, the missed exon-

junctions were examined by either experimental or computational approaches (Fig. 

9; see Section 2.3.1). Of 51,270 potential exon-junctions, 1,506 (3%) were 

additionally supported by the experimental approach in HeLa cells (Fig. 10A) and 

a similar fraction of potential junctions were supported in mES cells (Fig. 10A). Of 

the newly connected exon-junctions, 91.0-94.4% were present in GENCODE 

annotations and the remainder were novel (Fig. 10A). The unconnected potential 

exon-junctions were examined further with the program MaxEntScan to determine 

whether the most likely putative splicing signal, ‘GU-AG,’ existed in the region 

between two neighboring transfrags (Fig. 9). Using that approach, 11,153 potential 

junctions for HeLa cells and 7,634 for mES cells were newly connected (Fig. 10A); 

84.7–85.2% were present in GENCODE gene annotations and the remainder were 

novel (Fig. 10A). 

  To improve transfrag boundary annotation, TSSs, determined from CAGE-seq, 

and CPSs, determined from 3P-seq, were incorporated into relevant transfrags 

(Fig. 9; see Section 2.3.2). For TSSs and CPSs, respectively, 93-94% and 96-98% 

of transfrags were either confirmed or revised (Fig. 10B). Transfrags updated for 

both TSS and CPS (91-92%) were regarded as full-length transcripts (Fig. 10B). 

Updating TSSs improved the definition of the upstream promoter regions in which 

transcription factor binding sites (TFBSs) are significantly enriched (Fig. 10C). 

Similarly, transfrags with CPSs displayed an enriched poly(A) signal, AAUAAA 

within 15–30nt upstream of the cleavage site, compared to those without CPS 

updates (Fig. 10D). 
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Figure 9. Updating exon-junctions, TSSs, and CPSs in transfrag models. Shown is a 

workflow for updating transfrag models, which comprises two steps: i) updating exon-

junctions and ii) refining TSSs and CPSs. 
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Figure 10. Transcript models with new exon-junctions and accurate ends. (A) The 

number of neighboring transfrag pairs supported by putative splicing signals (red), by exon-

junction reads (navy), and by neither (green) in HeLa and mESC cells. The numbers in 

parentheses in the key indicate the number of pairs in each group. Among exon-junctions 
supported by either exon-junction reads or putative splicing signals, the fractions of known 

(cyan) and novel (brown) exon-junctions in GENCODE annotations are shown in the inset. 

(B) The fraction of transfrags updated with both TSS and CPS (blue), with only TSS (yellow), 

with only CPS (magenta), and with neither TSS or CPS (grey) in HeLa and mESC cells. (C) 

The number of TFBSs upstream of the original 5’ end (blue) and of the 5’ end updated with 

a TSS (pink) in HeLa cells. (D) The number of transfrags with a close poly(A) signal, 

AAUAAA, over the relative distances from the original 3’ end (blue) and the 3’ end updated 

with a CPS (pink) of transfrags in HeLa cells.  
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2.4. Integrating multimodal RNA-seq data 

2.4.1. Co-assembly Followed by End-correction (CAFE) pipeline 

We developed a transcriptome assembly pipeline, called CAFE (Co-assembly 

Followed by End-correction), which utilizes both stranded and unstranded RNA-

seq data to reconstruction full-length transcripts by integrating CAGE-seq and 3P-

seq data (Fig. 11). The CAFE pipeline consists of three main modules: (1) MAXIM 

-  Prediction of directions of unstranded reads using MLE (see Section 2.2), (2) 

COCOA - Either re-assembly of transfrags with RPDs or co-assembly with both 

RPDs and stranded reads, (3) BEX - Construction of full-length transcripts by 

updating exon-junctions, TSSs and CPSs from transfrag models (see Section 2.3). 
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Figure 11. A schematic flow of the CAFE pipeline. Shown is the schematic flow of the 

CAFE pipeline according to the combined, pseudo-stranded (RPD) and stranded assembly. 

If there are both stranded and unstranded reads in the same cell type, the MAXIM, COCOA, 
and BEX steps are all executed. If there are only unstranded reads, the MAXIM step is 

carried out with the pooled stranded RNA-seq data.  



 30 

 

2.4.2. CAFE improves transcriptome annotations 

  To evaluate the pipeline, we first sought to re-assemble only RPDs (named 

pseudo-stranded assembly) from HeLa and mES cells, and measured the 

accuracy of intermediate assembly at each step by comparing our results to 

GENCODE protein-coding genes in the base level (Fig. 12A). After updating TSSs 

and CPSs, the evaluation was proceeded with only transfrags with a major TSS 

and CPS while the count of transfrags took account of all isoforms. In total, 143,129 

transfrags from 25,118 loci were assembled from HeLa cells; the quality of the 

resulting assembly for protein-coding genes was improved by about 14% for 

precision and about 1.6% for recall, compared to the original unstranded assembly 

(Fig. 12A). Similarly, CAFE assembled 164,423 transfrags from 24,605 loci in mES 

cells and improved the quality of protein-coding gene assembly by 18.4% for 

precision and 1.3% for recall (Fig. 12A). Although the resulting transfrags that 

overlapped with GENCODE lncRNAs were relatively less accurate than those of 

protein-coding genes partly because of their low and tissue-specific expression 

patterns, CAFE also improved the quality of such transfrags by 22.1% and 8.3% 

for precision in HeLa and mES cells, respectively, without compromising recall. A 

major factor behind the increased precision for both protein-coding and lncRNA 

genes was the prediction of read direction and re-assembly (Fig. 12A). 

  We next performed combined assembly (co-assembly) of both stranded reads 

and RPDs using CAFE. The resulting assemblies included 166,227 transfrags from 

25,591 loci in HeLa cells and 244,085 transfrags from 26,332 loci in mES cells (Fig. 

12B). Both the recall and precision of the final resulting transcriptome were greatly 

improved in the base level, compared to that in the original assembly (Fig. 12).  
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Figure 12. Step-wise evaluation of transcriptomes re-assembled by CAFE. (A) Shown 

are the accuracies and sizes of pseudo-stranded transcriptomes (RPD assembly) at each 

step of CAFE in HeLa (top) and mES cells (bottom). The recall (red solid circle) and 
precision (blue) of the assemblies are measured by comparing to GENCODE protein-

coding genes (left panel) and lncRNAs (middle panel). The number of assembled 

transfrags and their loci are indicated at each step (right panel). (B) Shown are the 

accuracies and sizes of combined transcriptome assemblies of both stranded reads and 

RPDs. The low recall of the stranded assembly from HeLa cells is presumably because the 

stranded reads are of the single-end type and are 36 or 72 nt long. Otherwise, as in (A).  
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2.5. Benchmarking other transcriptome assemblers 

To check whether the improvement in transcriptome assembly depends on a 

specific base assembler (originally, Cufflinks+CAFE), other reference-based 

assemblers, Scripture (11) and StringTie (15), were benchmarked using the same 

dataset (Scripture+CAFE and StringTie+CAFE). The resulting assemblies were 

more accurate for both HeLa (Fig. 13A; 8.6~9.9% greater recall and 11.4~12.9% 

greater precision) and mES cells (Fig. 13B; 3.2~4.9% greater recall and 10.2~10.6% 

greater precision) than the original assemblies in the base level. Additionally, two 

available de novo assemblers, Trinity (19) and Velvet (17), were also benchmarked 

by predicting the strand information of unstranded reads using CAFE and the 

resulting de novo assemblies of RPDs and stranded reads were more accurate 

than the original de novo assemblies (Figs. 13A and B). Taken together, CAFE was 

able to improve initial assemblies robustly regardless of the base assembler used. 

  The number of full-length transcripts is another important aspect in the quality of 

transcriptome assembly. We thus compared the number of full-length transcripts 

assembled by CAFE which include both a TSS and a CPS in the first and the last 

exons to the number in the original and de novo assemblies. Trinity+CAFE and 

Velvet+CAFE assembled 8.8~10.4% more full-length transcripts than in the original 

de novo assemblies (Fig. 13C). Cufflinks+CAFE, StringTie+CAFE, and 

Scripture+CAFE assembled 14.6%, 10.1%, and 13.9% more full-length transcripts 

than in the original assembly, respectively (Fig. 13D). Similarly, CAFE constructed 

more full-length transcripts than in the original and de novo assemblies from mES 

cells (Fig. 13D).  
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Figure 13. Benchmarking other base assemblers. (A-B) The accuracies of combined 

transcriptome assemblies (solid circles) reconstructed by CAFE with base assemblers and 
of the original transcriptome assemblies (open circles) reconstructed by respective base 

assemblers, such as Cufflinks (red), Scripture (blue), StringTie (grey), Velvet (green), and 

Trinity (yellow), in HeLa (A) and mES cells (B). The accuracies of the original assemblies 

were calculated by averaging the accuracies of stranded and unstranded assemblies 

reconstructed by each base assembler. Velvet and Trinity were used as de novo 

assemblers, and Scripture, StringTie and Cufflinks were used as reference-based 

assemblers. (C-D) The numbers of full-length genes (light blue) and transcripts (blue) in 
the co-assemblies were compared to those in the original assemblies from HeLa (C) and 

mES cells (D). For the original assemblies, the higher number of full-length genes in the 

stranded and unstranded original assemblies was chosen. 
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2.6. High-confidence human transcriptome map 

2.6.1. Construction of high-confidence transcriptome map 

To construct a comprehensive human transcriptome map, large-scale 

transcriptome data were collected from the ENCODE Project, the Human 

BodyMap 2.0 Project and NCBI GEO human cell lines; these data included 65 

unstranded and 104 stranded RNA-seq data, TSS profiles across 17 human 

tissues, and CPS profiles from four human cell lines. We first predicted the 

directions of approximately six billion reads from 62 unstranded RNA-seq datasets 

using 60 cell-type-matched stranded RNA-seq datasets from 35 different cell types 

(Fig. 14A). The transcriptome assembly of the RPDs was more accurate than the 

unstranded transcriptome assembly in the base level (Fig. 14B), suggesting that 

the prediction of read directions significantly reduced erroneous transfrag 

assemblies. The co-assembly of RPDs and stranded reads with TSS and CPS 

profiles (Fig. 14A) reconstructed 338,359 transcripts from 46,634 loci, named 

BIGTranscriptome. 

To examine their quality, BIGTranscriptome were compared to those of RefSeq, 

GENCODE (manual), GENCODE (automatic), Pacific Biosciences (PacBio) long 

read assembly (PacBio), and MiTranscriptome in terms of the number of full-length 

independent transcripts. Although BIGTranscriptome reconstructed fewer 

transcripts than did MiTranscriptome (Table 1A), it contained more (16,376, 35%) 

independent genes that had at least one transcript with boundaries defined by 

TSSs and CPSs than did MiTranscriptome (5,741, 6%) and GENCODE (manual: 

6,522, 14%; automatic: 1,301, 7%) (Table 1B). Moreover, BIGTranscriptome 

included six thousand full-length independent single-exonic transcripts with a 



 35 

 

direction (~32.24% of single-exonic transcripts), whereas other annotations 

included tens of thousands of single-exonic transcripts, only 1~21% of which were 

full-length independent single-exonic transcripts (Table 2A). Thousands of those 

that remained appeared to be partial fragments that were included in 

BIGTranscriptome annotations (Table 2B). 
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Figure 14. Comprehensive human transcriptome map. (A) A schematic flow for the 

reconstruction of the BIGTranscriptome map using large-scale RNA-seq samples from 

human cell lines, ENCODE, and Human BodyMap 2.0 Projects. (B) Accuracies of 

unstranded (blue) and RPD assemblies (mint) from the ENCODE and Human BodyMap 

Projects 2.0. 
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Annotations Genes Transcripts Exons Introns 

RefSeq 23,982 42,709 230,903 212,045 

GENCODE (manual) 47,971 175,025 534,198 336,853 

GENCODE (automatic) 17,720 21,391 106,407 88,146 

MiTranscriptome 91,013 384,016 730,761 524,525 

PacBio (MCF7) 15,688 47,416 139,273 119,321 

BIGTranscriptome 46,634 338,359 580,429 378,707 

Table 1A. Statistics of transcriptome annotations. 

Annotations Genes TSS and CPS TSS or CPS Not supported 

RefSeq 23,982 7,702 (32%) 9,992 (42%) 6,288 (26%) 

GENCODE (manual) 47,971 6,522 (14%) 17,562 (37%) 23,887 (50%) 

GENCODE(automatic) 17,720 1,301 (7%) 4,831 (27%) 11,588 (65%) 

MiTranscriptome 91,013 5,741 (6%) 21,851 (24%) 63,421 (70%) 

PacBio (MCF7) 15,688 3,735 (24%) 8,749 (56%) 3,204 (20%) 

BIGTranscriptome 46,634 16,376 (35%) 11,219 (24%) 19,039 (41%) 

Table 1B. Independent genes supported by TSS and CPS tags. 
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Annotations Single-exonic 
transcripts 

Undetermined 
transcripts 

Independent 
transcripts 

RefSeq 3,937 0 458 (12%) 

GENCODE (manual) 14,740 0 989 (7%) 

GENCODE (automatic) 10,087 0 105 (1%) 

MiTranscriptome 39,901 14,102 (35%) 1,216 (3%) 

PacBio (MCF7) 5,107 0 1,068 (21%) 

BIGTranscriptome 18,642 0 6,011 (32%) 

Table 2A. Single-exonic transcripts from annotations. 

Annotations Putative partial 
fragments 

Partial fragments confirmed by 
BIGTranscriptome  

RefSeq 3,479 50 (1.4%) 

GENCODE (manual) 13,751 55 (0.4%) 

GENCODE (automatic) 9,982 364 (3.7%) 

MiTranscriptome 38,685 1,434 (3.7%) 

PacBio (MCF7) 4,039 67 (1.7%) 

Table 2B. Partial fragments from annotations. 
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2.6.2. The annotation accuracy of BIGTranscriptome map 

  The accuracy of BIGTranscriptome annotations was evaluated at the base level 

in terms of recall and precision based on RefSeq, GENCODE (manual), 

GENCODE (automatic), or PacBio (MCF7) annotations. BIGTranscriptome 

annotations were found to be 14.7 ~ 36.7% more precise for the RefSeq and 

GENCODE (manual) transcripts than were MiTranscriptome annotations, without 

compromising recall (Fig. 15A). We also checked if the intron structures of 

BIGTranscriptome agreed with those of the RefSeq, GENCODE, expression 

sequence tags (ESTs), PacBio, and combined annotations (RefSeq + GENCODE 

+ EST + PacBio), and compared the results to those of MiTranscriptome. Overall, 

our BIGTranscriptome annotations were superior to those of MiTranscriptome for 

both recall (22.6% greater) and precision (40.5% greater) in the combined 

annotations (Fig. 15A), indicating that BIGTranscriptome transcripts are less likely 

to be fragmented. 

  87.0% of the 29,274 putative BIGTranscriptome introns, not detected in the 

combined annotations, included a canonical splicing signal, ‘GU’-‘AG’, two 

nucleotides away from both ends; the remainder lacked the canonical splice signal. 

Although the putative introns of MiTranscriptome also included the canonical splice 

signals at a similar level as BIGTranscriptome, the putative splice sites of 

MiTranscriptome showed significantly lower maximum entropy scores than those 

of BIGTranscriptome at both splice donor and acceptor sites (Figs. 15B and C). 

  To evaluate the accuracy of BIGTranscriptome transcript boundaries, we 

counted TFBSs in the regions upstream of the TSSs and canonical poly(A) signals 

in the regions around the CPSs. A higher fraction of TFBSs within 500nt upstream 
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of a TSS (Fig. 15D) and poly(A) signals within 15-30nt upstream of a CPS (Fig. 

15E) were observed for BIGTranscriptome transcripts than for MiTranscriptome 

and GENCODE (automatic), indicating that BIGTranscriptome includes transcripts 

with more precise ends. However, because the CPS information was profiled from 

only four human cell types, we additionally updated the cell-type specific 3’ ends 

of transcripts using GETUTR, which predicts the 3’ end of a transcript from RNA-

seq data (67). 
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Figure 15. The annotation accuracy of BIGTranscriptome. (A) Shown are the 

accuracies of BIGTranscriptome and MiTranscriptome at the base and intron levels based 

on four different sets of annotations (RefSeq, manual and automatic GENCODE, PacBio, 

and EST), and a combined set of annotations. (B-E) Maximum entropy scores of the 

putative splice donor sites (B) and of putative splice acceptor sites (C). Blue lines are from 

BIGTranscriptome, green lines are from PacBio assembly, and orange lines are from 

MiTranscriptome. (D) The fraction of TFBSs upstream of the 5’ end of BIGTranscriptome 

transcripts (blue) was compared to those of MiTranscriptome (orange), GENCODE 
(automatic) (black), and PacBio assembly (green). (E) The fraction of the closest poly(A) 

signals, AAUAAA, in the region just upstream of the 3’ end of BIGTranscriptome 

annotations (blue) compared to those of MiTranscriptome (orange), GENCODE (automatic) 

(black), and PacBio assembly (green). 
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2.6.3. Impact of downstream analysis based on accurate annotation 

  We sought to examine whether our BIGTranscriptome annotations could benefit 

the expression profiling of genes and their downstream analysis. T222734 was 

annotated as a single form in MiTranscriptome but this sequence turned out to be 

an independent protein-coding gene, PRPF6, and a lncRNA, LINC00176, evident 

with CAGE-seq and 3P-seq, in BIGTranscriptome (Fig. 16A). Using the single and 

the two independent forms of the genes, we performed Kaplan-Meier survival 

analyses for 164 liver cancer samples from the TCGA Project. We found that the 

PRPF6 gene is a more significant marker (log rank test P = 0.0006; Fig. 16C) for 

the prognosis of the liver cancer patients than T222734 (log rank test P = 0.003; 

Fig. 16B), whereas LINC00176 is expressed at a low level and is not significant 

marker (log rank test P = 0.3; Fig. 16D). Similarly, AC15645 (lncRNA) and MLXIP 

(protein-coding gene) were annotated in BIGTranscriptome but they were 

annotated as a single form (T087998) in MiTranscriptome (Fig. 17A). The MLXIP 

annotated in our BIGTranscriptome appeared to be a more significant prognosis 

marker (Fig. 17E) than T087998 and T088004 annotated in MiTranscriptome (Fig. 

17B and C) but the lncRNA, AC15645 turned out to be expressed at a low level 

(Fig. 17D). 
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Figure 16. Mis-annotated gene model in MiTranscriptome. (A) Examples of mis-

annotated gene model in MiTranscriptome. (A) Gene models of BIGTranscriptome and 

MiTranscriptome, and CAGE-seq and 3P-seq data, at a locus. A fused single form, 

T222734, was annotated in MiTranscriptome whereas two independent genes, PRPF6 and 

LINC00176, were annotated in BIGTranscriptome. (B-D) Survival analyses for TCGA liver 

cancer samples based on the resulting gene models. 164 patient samples including 

termination events were divided into two groups, the top 50% (red) and bottom 50% (blue), 

by the median FPKM values of T222834 (B), PRPF6 (C), and LINC00176 (D). 
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Figure 17. Survival analysis for liver cancer samples based on mis-annotated 
transcripts. (A) Gene models of a protein-coding gene, MLXIP, and a lncRNA, AC156455, 

in BIGTranscriptome and MiTranscriptome. (B-E) Survival analyses for TCGA liver cancer 

patient samples based on the gene models. 164 samples including termination events were 

divided into two groups, the top 50% (red) and bottom 50% (blue), according to the median 

FPKM values of T087998 (B), T088004 (C), AC156455 (D), and MLXIP (E). 
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Chapter 3. Identifying ESCC-driving lncRNAs 
based on reconstructed transcriptome map 
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3.1. A comprehensive set of dysregulated lncRNAs in ESCC 

Contribution Statement: In this session, Bo-Hyun You performed the all 

sequencing data and bioinformatics analyses, supervised by Jin-Wu Nam. 

3.1.1. Reconstruction of transcriptome map and annotation of lncRNAs 

To construct a comprehensive set of lncRNAs in esophageal squamous cell 

carcinoma (ESCC), RNA-seq performed from paired cancerous and non-

cancerous tissues of 13 ESCC patients in the Yonsei Severance Hospital (YSH) 

cohort and was subjected to transcriptome assembly, and lncRNA annotation (Fig. 

18). Transcriptome assembly was performed from RNA-seq data in the YSH cohort 

using the CAFE pipeline (version 1.0.1) (29). A total of 50,474 transcripts from 

24,228 loci were constructed and classified as known or novel transcripts based 

on their overlap with transcripts from GENCODE v19 annotation. To annotate 

lncRNA genes, we performed the following filtration steps: [1] transcripts shorter 

than 200nt in length were discarded and [2] transcripts sense-overlapping with 

exons of known genes were excluded. We assessed the coding potential of the 

remaining transcripts using two independent coding potential calculators: [1] CPC, 

which is a BLASTX-based method that performs similarity searches against all 

non-redundant protein sequences from multiple species (68) and [2] CPAT, which 

is an alignment-free method for calculating coding potential using sequence-based 

features (69). Of the remaining transcripts, those with a CPC score < 0 and a CPAT 

score < 0.364 were defined as novel lncRNAs. The final lncRNA catalogue was 

made by combining the novel and known lncRNAs from GENCODE v19 annotation. 

In total, 6411 lncRNAs from 4842 known loci and 1924 from 1657 novel loci were 

annotated. 
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Figure 18. Annotation and expression analysis of lncRNAs in ESCC. A schematic flow 
for lncRNA annotation and expression profiling of novel and known lncRNAs from the YSH 

ESCC cohort. 

  



 48 

 

3.1.2. Expression profiling of lncRNAs from multiple cohorts 

Using the resulting annotations of known and novel lncRNAs, lncRNA 

expression levels were measured over the YSH cohort, publicly available ESCC 

cohorts (95 tumor samples from TCGA and 15 paired samples from a Chinese 

ESCC cohort) (61, 70), and GTEx Esophagus mucosa datasets (328 samples) (24). 

Because the RNA-seq data from the TCGA ESCC and GTEx Esophagus mucosa 

datasets were unstranded type, the strand information was predicted and the 

unstranded reads were converted to RPDs using CAFE (29). 

3.1.3. An ethnically independent set of DE lncRNAs 

Of the total of 8335 lncRNAs, 465 (305 upregulated and 160 downregulated) 

were significantly dysregulated in ESCC from YSH cohort, exhibiting greater than 

two-fold differences in expression, with a false discovery rate (FDR) ≤ 0.01 (Fig. 

19A). Then, to identify an ethnically independent set of DE lncRNAs in ESCC, 113 

DE lncRNAs commonly dysregulated in all three ESCC cohorts (YSH, 

GTEx+TCGA, and Chinese) were selected (Fig. 19A). Of the 113 confidence DE 

lncRNAs, 20 were newly annotated, 32 were upregulated, and 81 were 

downregulated in ESCC (Fig. 20). A majority of the confidence DE lncRNA genes 

were either located in intergenic regions or were antisense to other genes (Fig. 

19B); their genomic and clinical features, such as subcellular localization of the 

lncRNA (Fig. 19C), associations with enhancers (Fig. 19D), and DNA methylation 

(Fig. 19E), were systematically examined. As previously reported, many 

overlapped with enhancers (Fig. 19D) and seemed to be associated with 

epigenetic markers of other genes (Fig. 19E). 
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Figure 19. Characterization of a common set of DE lncRNAs in ESCC. (A) Venn 

diagram of the DE lncRNAs detected in three ESCC cohorts (YSH, Chinese, and 

GTEx+TCGA). The pie charts (B-F) show the number of DE lncRNAs categorized 

according to their genomic location (B), subcellular localization (C), enhancer overlap (D), 

association with DNA methylation (E), and prognostic power (F). 
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Figure 20. Characteristics of common DE lncRNAs in distinct ESCC cohorts. (a) The 

numbers of known and novel DE lncRNAs are shown in a pie chart. (b) The expression 

change patterns of these lncRNAs are shown in a pie chart. (c) The heatmap represents 

the expression levels of 113 DE lncRNAs in non-cancer and cancer samples from the YSH 
cohort (left panel). The right panels show the subcellular localization (Loc.), enhancer 

overlap (Enhancer), DNA methylation association (Methyl), and associated hazard ratio 

(Survival) of 113 DE lncRNAs. *P ≤ 0.05.  
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3.1.4. Association of DE lncRNAs with clinical outcomes 

  To find clinically relevant lncRNAs that are associated with survival outcomes of 

patients, Kaplan-Meier survival analyses for all 113 DE lncRNAs were performed 

with TCGA ESCC datasets comprising 95 patient samples (Fig. 19F). Six DE 

lncRNAs were significantly associated with survival rates, two (HERES and RP11-

1L12.3) of which were associated with a high hazard ratio (HHR; P ≤ 0.05) and 

four (RP11-114H23.1, RP11-114H23.2, CTD-2319I12.1, and LINC00330) of which 

were associated with a low hazard ratio (LHR; P ≤ 0.05). To delineate how the 

expression of the six lncRNAs stratifies ESCC patients, we clustered samples from 

the TCGA and YSH cohorts including additional 10 RNA-seq samples where the 

clinical values were available based on the binary expression patterns (high and 

low) of the six lncRNAs, revealing four distinct classes of patients: class L1~L4 (Fig. 

21). Noticeably, class L1, in which only the HHR markers are highly expressed, 

showed a worse survival rate than class L3 (P < 0.05) and the other classes (P = 

0.01; Fisher’s exact test). Class L3 tended to display a greater overall survival rate 

than other classes (P < 0.05; Fisher’s exact test). Importantly, class L1 appeared 

to be significantly associated with smoking (P < 0.05; Fisher’s exact test), 

compared to other classes. Taken together, these results indicate that the six 

lncRNAs represent prognostic signature genes that can stratify ESCC patients 

based on clinical outcomes. 
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Figure 21. The four ESCC subclasses with different clinical outcomes. The four ESCC 

subclasses based on the six prognostic marker lncRNAs in Fig. 19F. The top section 

presents cohort information, clinical history, pathological features, and survival information 
from the YSH and TCGA ESCC patients. The various categories are represented as 

different colors, as shown in the legend on the right. The expression patterns of the six 

prognosis-related lncRNAs in the RNA-seq datasets are shown with a colored heatmap in 

the bottom section (red indicates the top 33% highly expressed lncRNAs associated with a 

HHR; blue indicates the top 33% highly expressed lncRNAs associated with a LHR). 
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3.2. A novel lncRNA, HERES, is upregulated in ESCCs 

Contribution Statement: In this session, Bo-Hyun You performed the all 

sequencing data, survival, and conservation analyses, supervised by Jin-Wu Nam. 

Jung-Ho Yoon (Yonsei University) performed all experiments, supervised by Sang 

Kil Lee. 

3.2.1. HERES encodes alternative splicing isoforms 

Since HERES, one of the HHR markers (see Section 3.1.4), was greatly 

upregulated in ESCCs compared to paired adjacent non-cancerous samples (Fig. 

22) and most strongly associated with poor vital status (Fig. 21), we investigated 

whether HERES might be an ESCC-driving lncRNA. The lncRNA gene encodes 

two isoforms with the same transcription start sites (TSSs) (35) and cleavage and 

polyadenylation sites (CPSs) (66) (Fig. 23A). Isoform #1, HERES.1, is 2160nt and 

contains two exons, whereas isoform #2, HERES.2, is an intron-retained, single-

exonic transcript that is 6675nt. Both isoforms were confirmed to lack coding 

potential (Fig. 23A). Analysis of ESCC RNA-seq datasets (Fig. 24A) and 

quantitative RT-PCR (qRT-PCR) in an ESCC cell line (KYSE-30) (Fig. 23B) 

showed that HERES.1 is the major isoform. Only a short region in HERES exon 1 

displays sequence conservation with a region in the mouse genome; the intergenic 

HERES locus between the GLS and NAB1 genes on chromosome 2 is syntenically 

conserved in mouse (Fig. 24B). 
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Figure 22. Expression levels of six prognostic lncRNAs in ESCC tissues. (A-F) 
Expression levels of six prognostic lncRNAs were evaluated using qRT-PCR in paired 

cancer and non-cancer frozen tissue samples. T-test was used to estimate significance. 

**P ≤ 0.01, ***P ≤ 0.001. 
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Figure 23. HERES encodes two isoforms. (A) The HERES genomic locus with CAGE-

seq and 3P-seq signals. qRT-PCR primer sets were designed to recognize exonic (two) 

and intronic regions (three). The coding potentials calculated by CPC and CPAT are 

indicated on the right. (B) qRT-PCR results using the five primer sets in KYSE-30 cells. (B) 

Error bars represent the mean ± SD from three independent experiments. 

 

 

Figure 24. Gene locus and isoform-level expression of HERES. (A) Expression levels 

of two HERES isoforms (HERES.1 and HERES.2) in non-cancer and cancer tissues from 

YSH (n=23, paired), Chinese (n=15, paired), and TCGA ESCC cohorts (n=95). (B) The 

HERES genomic locus with sequence and positional conservation between human and 

mouse shown. The region of sequence conservation is indicated with a red box. 
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3.2.2. HERES upregulated in squamous-cell-type cancers 

  Elevated HERES expression was then validated in other ESCC cell lines. 

Compared to that in a normal esophageal epithelial cell line (Het-1A), HERES 

expression appeared to be upregulated greater than 10-fold in all tested ESCC cell 

lines (Fig. 25A), as observed in ESCC samples (Fig. 25B). HERES was 

significantly upregulated not only in ESCC, but also in esophageal 

adenocarcinoma (ESAD) and other squamous carcinomas (head and neck, and 

lung squamous cell carcinoma; HNSC and LUSC), but not in lung adenocarcinoma 

(LUAD) (Fig 26A). These expression changes were further confirmed in 66 ESCC 

samples from the YSH cohort using qRT-PCR, which revealed an elevated level of 

HERES in cancers compared to adjacent non-cancerous samples (Fig. 25C, left 

panel). HERES expression in the adjacent non-cancerous samples was higher 

than that in normal mucosa from the normal population (Fig. 25C, right panel). As 

observed in the YSH cohort (Fig. 25D, left panel), HERES levels were significantly 

correlated with stage-free survival rates in the TCGA ESCC cohort (Fig. 25D; right 

panel), and multivariate analysis with clinical information revealed that the HERES 

level was strongly associated with tumor grade (P = 0.004; Fisher’s exact test) but 

not with other clinicopathological factors (Fig 26B). 
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Figure 25. HERES is a highly expressed lncRNA in ESCC. (A) The HERES expression 

level was measured in five ESCC cell lines and a normal esophageal cell line (Het-1A). (A) 

Error bars represent the mean ± SD from three independent experiments. (B) The box 

plots show the HERES expression levels in normal, non-cancerous, and cancerous tissues 

from the YSH cohort (paired), the Chinese cohort (paired), and the TCGA cohort. (C) 

HERES expression levels measured by qRT-PCR in additional frozen tissue samples 

including YSH ESCC (n=66) and adjacent samples (non-cancer; n=66) (left panel) and in 

normal mucosa tissues (n=21) from reflux symptom patients (right panel). (D) Survival 

analyses of YSH and TCGA patients from whom the ESCC samples were obtained based 

on the HERES expression level. **P ≤ 0.01, ***P ≤ 0.001. 
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Figure 26. HERES upregulated in squamous-cell-type cancers. (A) The box plots show 

the HERES expression levels in normal, non-cancer, and cancer tissues from the GTEx 

and TCGA cohorts. (B) Association of clinicophathological features and HERES expression 

in TCGA ESCC patients. Fisher’s exact test was used to estimate significance. *P ≤ 0.05, 

***P ≤ 0.001.  
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3.3. HERES promotes cancer development and progression 

Contribution Statement: In this session, Jung-Ho Yoon (Yonsei University) 

performed all experiments, supervised by Sang Kil Lee. 

  To investigate whether HERES is involved in cancer development and 

progression, the effects of HERES knockdown on cell proliferation, migration, 

invasion, and colony formation were explored with siControl- and siHERES-treated 

cells. The proliferation indices (Optical Density [O.D.] values) were significantly 

reduced in both siHERES_1 and siHERES_2-treated cells compared to siControl-

treated cells (Fig. 27A), and the introduction of a HERES pcDNA expression 

construct partly rescued the proliferation activity (Fig. 27A), indicating that HERES 

can regulate cell proliferation. Migration and invasion assays showed that both cell 

migration and invasion were greatly reduced in siHERES-treated cells compared 

to siControl-treated cells (Figs. 27B and C). In addition, HERES knockdown also 

reduced colony formation measured at 14 days after siRNA transfection (Fig. 27D). 

A role for HERES in malignant ESCC progression was confirmed by the reduction 

of N-cadherin and vimentin levels in siHERES-treated cells and by the rescue of 

these levels by the introduction of the HERES pcDNA construct to the cells (Fig. 

27E). These results suggest that HERES can promote cancer progression and 

metastasis. 
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Figure 27. HERES modulates cell proliferation, migration, invasion, and colony 
formation. (A) Cell viability was measured using an MTS assay in KYSE-30 and HCE-7 

cells transfected with siControl (NC), siHERES (si_1 and si_2), or siHERES followed by 

pcDNA-HERES (si_1+pcDNA, si_2+pcDNA). Growth curves were compared between 

siHERES- and siControl-transfected cells, and between pcDNA-HERES+siHERES- and 

siHERES-transfected cells. Wound healing assays (B), invasion assays (C), and colony 

formation assays (D) were performed in KYSE-30 and HCE-7 cells after HERES 
knockdown. The bar graphs represent the frequency of wound closure (B) and the number 

of invading cells (C) and colonies formed (D). Data represent the mean ± SD from three 

independent experiments (A-D). *P ≤ 0.05, **P ≤ 0.01. (E) Expression of EMT markers 

in KYSE-30 and HCE-7 cells transfected with siControl or the indicated combinations of 

siHERES and pcDNA-HERES as determined by immunoblot. 
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3.4. HERES regulates Wnt signaling pathways 

Contribution Statement: In this session, Bo-Hyun You performed NanoString and 

sequencing data analyses, supervised by Jin-Wu Nam. Jung-Ho Yoon (Yonsei 

University) performed all experiments, supervised by Sang Kil Lee. 

3.4.1. HERES affects Wnt signaling pathway-related genes 

To study the means by which HERES promotes cancer development and 

progression, the changes in expression of ~730 cancer-related pathway genes 

were analyzed in siHERES-treated and siControl-treated KYSE-30 cells using the 

NanoString nCounter PanCancer Pathways Panel (Fig. 28A). 77 cancer-related 

genes (34 for up-regulation and 43 for down-regulation) were dysregulated greater 

than two-fold in siHERES-treated cells compared to siControl cells (Fig. 28A); the 

expression changes of the two most upregulated genes (CACNA2D3 and SFRP2) 

and the two most downregulated genes (BMP7 and GRIN1) in this group were 

confirmed by qRT-PCR (Fig. 29). Noticeably, among the genes dysregulated by 

HERES reduction, 14 belong to the Wnt signaling pathway, and half of the 10 most 

upregulated genes (CACNA2D3, SFRP2, CACNA1E, CXXC4, and SFRP4) are 

involved in the Wnt signaling pathway. CACNA2D3, which encodes a subunit of 

the calcium channel protein complex, was previously shown to be induced in ESCC 

(71) and other cancers (72, 73) via epigenetic mechanisms, and its downregulation 

led to inactivation of Wnt/Ca2+ signaling pathway (73). SFRP2 encodes a member 

of the SFRP family that modulates the Wnt signaling pathway; SFRP2 

hypermethylation is known to enhance cell invasiveness in both cancers and non-

cancerous diseases (74, 75). The enrichment of canonical and noncanonical Wnt 

signaling pathway-related genes among the genes that respond to HERES 
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depletion, together with results from previous studies, suggest that HERES may 

regulate cancer development via control of Wnt signaling pathways. 
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Figure 28. HERES affects Wnt signaling pathway-related genes. (A) Changes in the 

expression of cancer-related genes in response to siHERES treatment compared to 
siControl are shown. The colored circles indicate genes that are upregulated (red) or 

downregulated (blue) under HERES-depleted conditions. Changes in the expression of the 

highlighted genes were experimentally confirmed by qRT-PCR. (B) HERES expression in 

the nuclear and cytoplasmic fractions of KYSE-30 cells as determined by qRT-PCR. (C) 

Log-scaled fold-changes of expression (X-axis) and DNA methylation (Y-axis) of each gene 

in the HERES-high versus HERES-low sample groups from the TCGA dataset. The red 

dots indicate DE genes in ESCC. The highlighted genes are those for which there is anti-
correlation between expression and DNA methylation. (D) The CACNA2D3 genomic locus 

with CpG island tracks, DNA methylation (beta value), and RNA expression (read count) in 

the HERES-high and HERES-low groups. (E) CACNA2D3 and LDOC1 DNA methylation 

patterns (methylation (M) and unmethylation (UM)) were measured by MS-PCR in KYSE-

30 cells transfected with siControl or siHERES.  
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Figure 29. Expression patterns of putative target genes of HERES. (A-D) Expression 
levels of the four most dysregulated genes, as determined from nanoString results, were 

validated by qRT-PCR in KYSE-30 cells. Data represent the mean ± SD from three 

independent experiments (A-D). *P ≤ 0.05, **P ≤ 0.01. 
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3.4.2. HERES epigenetically regulates target genes 

  As HERES appeared to be enriched in the nucleus rather than the cytoplasm 

(Fig. 28B) and nucleus-localized lncRNAs are often reported to be epigenetic 

regulators, a potential epigenetic role for HERES was investigated by analyzing 

publicly available array-based DNA methylation and RNA-seq data from TCGA 

ESCC samples. Based on their HERES expression level, the ESCC samples were 

first divided into two subgroups, HERES-high and HERES-low, and the changes in 

expression and DNA methylation of the protein-coding genes were then compared 

between the subgroups (Fig. 28C). Of the genes, CACNA2D3 and LDOC1 (Figs. 

28D and 30A) were downregulated and hypermethylated in the HERES-high group, 

whereas EPSTI1, SLC15A3, and BST2 were upregulated and hypomethylated in 

the HERES-high subgroup. The expression and DNA methylation changes were 

confirmed in HERES-depleted KYSE-30 cells by qRT-PCR and methylation-

specific (MS) PCR. Only two downregulated genes (CACNA2D3 and LDOC1) were 

confirmed to have both expression and DNA methylation changes (Figs. 28E and 

30B-H). On the other hand, although SFRP2 and CXXC4 did not display DNA 

methylation changes in the analysis of the TCGA ESCC samples, the expression 

and DNA methylation signals of the Wnt signaling-related genes were changed 

similarly to those of CACNA2D3 and LDOC1 in the siHERES-treated cells 

compared to the siControl-treated cells (Figs 29B and 31A-C). 

Because DNA methylation is often associated with histone modifications {Cedar, 

2009 #25;Vire, 2006 #24}, global changes in histone modification markers in 

response to HERES knockdown were examined, revealing a marked decrease in 

H3K27me3 levels (Fig. 32A). We then investigated where the H3K27me3 signal 
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was depleted in the genomic regions of three Wnt signaling pathway genes in 

siHERES-treated cells using chromatin immunoprecipitation (ChIP)-qPCR 

analysis. Significantly reduced H3K27me3 signals were observed at specific sites 

in the genes (recognized by primer 5 for CACNA2D3, primers 3, 4, and 5 for 

SFRP2, and primer 9 and 10 for CXXC4) in siHERES-depleted cells (Figs. 32B-D). 
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Figure 30. Expression and methylation patterns of putative target genes of HERES. 
(A) The LDOC1 genomic locus with CpG island tracks, DNA methylation (beta value), and 

RNA expression (read count) in the HERES-high and HERES-low groups. (B-E) 

Expression levels of LDOC1, EPSTI1, SLC15A3, and BST2 were measured by qRT-PCR 

in KYSE-30 cells. (F-H) DNA methylation patterns (methylation (M) and unmethylation 
(UM)) of EPSTI1, SLC15A3, and BST2 were measured by MS-PCR in KYSE-30 cells. Data 

represent the mean ± SD from three independent experiments. *P ≤ 0.05, **P ≤ 0.01. 

 



 68 

 

 

Figure 31. HERES epigenetically regulates genes involved in the Wnt signaling 
pathway. (A-B) DNA methylation patterns (methylation (M) and unmethylation (UM)) of 

SFRP2 and CXXC4 were measured by MS-PCR in KYSE-30 cells. (C) The CXXC4 

expression level was confirmed by qRT-PCR in KYSE-30 cells. 
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Figure 32. HERES regulates canonical and noncanonical Wnt signaling pathways. (A) 

Immunoblots of histone modification markers in siControl- or siHERES-transfected KYSE-

30 cells. (B-D) ChIP-qPCR analysis of the H3K27me3 levels of CACNA2D3 (B) SFRP2 (C), 
and CXXC4 (D) in siControl- or siHERES-transfected KYSE-30 cells. Data represent the 

mean ± SD from three independent experiments. *P ≤ 0.05, **P ≤ 0.01. (E) Expression 

of EMT markers in KYSE-30 and HCE-7 cells transfected with siControl or the indicated 
combinations of siHERES and pcDNA-HERES as determined by immunoblot.  
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3.4.3. HERES regulates canonical and noncanonical Wnt signaling pathways 

  Previous studies reported that CACNA2D3 downregulation inhibited the non-

canonical Wnt/Ca2+ signaling pathway by decreasing the intracellular calcium level 

and NLK expression (73) and that SFRP2 and CXXC4 play roles as negative 

regulators of the canonical Wnt signaling pathway {Chung, 2009 #23;Kojima, 2009 

#28}. We thus examined changes in the expression of two Wnt signaling-related 

factors, NLK and β-catenin, in siHERES-treated cells (Fig. 32E). As expected, 

HERES reduction increased the NLK level and decreased 𝛽-catenin in KYSE-30 

and HCE-7 cells. In addition, changes in the expression of Wnt downstream targets 

were also confirmed (Fig. 32E). In contrast, introducing the pcDNA-HERES 

construct to cells reverted the expression levels of NLK, 𝛽 -catenin, and Wnt 

downstream targets (Fig. 32E). Taken together, these results suggest that HERES 

downregulation in cancers perturbs and promotes canonical and non-canonical 

Wnt signaling pathways via epigenetic regulation, resulting in the inhibition of 

cancer progression. 
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3.5. The effect of HERES on the cell cycle and apoptosis 

Contribution Statement: In this session, Jung-Ho Yoon (Yonsei University) 

performed all experiments, supervised by Sang Kil Lee. 

  Because two of the downstream targets of HERES, CCND1 and CACNA2D3, 

are known to regulate the cell cycle and apoptosis (71, 73), the effect of the loss 

of HERES on the cell cycle and apoptotic processes was examined. Cell counting 

showed that siHERES-treated cells were arrested at G0/G1 (Fig. 33A). Flow 

cytometry showed that siHERES-treated cell populations exhibited significantly 

increased levels of apoptosis compared to siControl-treated cells (Fig. 33B). An 

induction of apoptotic factors, such as cleavage of poly (ADP-ribose) polymerase 

(PARP), cleaved caspase-9, and Bax, and a reduction of the anti-apoptotic factor, 

Bcl-2, were confirmed in siHERES-treated cells. However, the rescue of HERES 

expression reverted the expression of these factors to levels in control cells (Fig. 

33C). 
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Figure 33. The effect of HERES on the cell cycle and apoptosis. Cell cycle (A) and 

apoptosis (B) assays were performed on siRNA-transfected KYSE-30 and HCE-7 cells. (A) 

Cell cycle analysis of siRNA-transfected KYSE-30 and HCE-7 cells by flow cytometry. The 

bar graph shows the percentage of cells in sub-G0, G1, S, and G2 phases in siRNA-

transfected KYSE-30 and HCE-7 cell populations. (B) Apoptosis was measured by flow 

cytometry using PI/Annexin V staining. The bar graph represents the percentage of 

apoptotic cells in each population. Data represent the mean ± SD from three independent 

experiments. (C) Apoptosis markers were assessed by immunoblot in KYSE-30 and HCE-

7 cells transfected with siControl or siHERES and/or pcDNA-HERES. *P ≤ 0.05, **P ≤ 

0.01.  
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3.6. HERES interacts with EZH2 to regulate CACNA2D3 

Contribution Statement: In this session, Bo-Hyun You performed the sequence 

analysis, supervised by Jin-Wu Nam. Jung-Ho Yoon (Yonsei University) performed 

all experiments, supervised by Sang Kill Lee. 

3.6.1. Interaction of HERES with EZH2 

We then asked how HERES regulates the expression of target genes at the 

epigenetic level. To address this question, binding sites for possible epigenetic 

modulators that can drive the histone methylation of target genes were first 

examined using publicly available ChIP-seq datasets from the ENCODE Project. 

We found that all three HERES target genes contained enhancer of EZH2 binding 

sites in their promoter regions (Fig. 34). Because EZH2, a subunit of the PRC2, 

has a well-known role in histone methylation to generate H3K27me3 and is known 

to interact with nuclear lncRNA, we suspected that EZH2 would be a binding 

partner of HERES. To examine the molecular relationship between HERES and 

EZH2, EZH2 RNA and protein levels were quantified in siControl- and siHERES-

treated KYSE-30 cells, showing that HERES reduction decreased the EZH2 

protein level but not the RNA level (Figs. 35A and 36A). Subsequently, RNA 

immunoprecipitation (RIP) (Fig. 35B) and EZH2 IP (Fig. 35C) assays showed the 

interaction of HERES and CACNA2D3 with EZH2. 
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Figure 34. EZH2 ChIP-seq signals identified in CACNA2D3, SFRP2, and CXXC4. 
CACNA2D3 (A), SFRP2 (B), and CXXC4 (C) genomic loci with CpG island tracks, EZH2 

ChIP-seq peaks, and H3K27me3 signals. 
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Figure 35. Interaction of HERES with EZH2. (A) Immunoblots of EZH2 and DNMT1 in 

KYSE-30 cells transfected with either siControl or siHERES. (B) RIP assays were 

performed with anti-EZH2 in KYSE-30 cell lysates. The quantity of HERES in the cell 

lysates (input) and the immunoprecipitates was measured by qRT-PCR. (C) IP assays were 

performed with anti-EZH2 in KYSE-30 cell lysates. The quantity of CACNA2D3 in the cell 

lysates (input) and the immunoprecipitates was measured by immunoblot. Data represent 

the mean ± SD from three independent experiments (B). 

 

Figure 36. Putative binding sites of EZH2 on HERES. (A) Relative expression of HERES 

and EZH2 in KYSE-30 cells transfected with a control siRNA (siControl) or HERES siRNAs 

(siHERES_1 or siHERES_2). (B) Six putative G-rich regions in HERES transcripts. (C) 

Relative HERES expression determined using the six primer sets referred to (B) in EZH2-

IP. Data represent the mean ± SD from three independent experiments. **P ≤ 0.01. 

 

  



 77 

 

3.6.2. HERES regulates CACNA2D3 via direct interaction with EZH2 

  To validate a direct interaction between HERES and PRC2-EZH2, we then 

searched for PRC2-EZH2 binding motifs in the HERES sequence. Because the 

PRC2 complex including EZH2 is known to be recruited by G-rich motif, we 

scanned for G-rich regions in HERES transcripts, leading to the identification of six 

regions including two potential g-quadruple structure motifs (Fig. 36B). EZH2-IP 

and qRT-PCR showed that a single region with four GGW repeats (index 1) was 

significantly enriched in EZH2-IP (Fig. 36C). To further investigate if the HERES 

GGW repeat sequence (index 1) is necessary for an interaction with EZH2, we 

constructed a plasmid vector that harbors a HERES sequence that lacks the GGW 

repeat region (HERES-Mut) (Fig. 37A). A RIP assay confirmed that EZH2 failed to 

interact with HERES-Mut in KYSE-30 cells (Fig. 37B). RNA fluorescence in situ 

hybridization (FISH) of HERES and fluorescein isothiocyanate (FITC) staining of 

CACNA2D3 validated that HERES was principally localized to the nucleus and that 

the GGW sequence (index 1) is necessary for the interaction with EZH2 to 

downregulate CACNA2D3 (Fig. 37C). Cells transfected with HERES-Mut exhibited 

significantly increased CACNA2D3 at both the RNA and protein level, whereas 

HERES overexpression (pcDNA-HERES) reduced the CACNA2D3 level (Figs. 

37D and E). 
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Figure 37. HERES directly interacts with EZH2 via G-rich motif. (A) Representation of 

the WT and mutated (HERES-Mut) HERES sequences used for IP with anti-EZH2. 

HERES-Mut contains a deletion of the G-rich sequence (index 1) presented in Fig. 36B. (B) 

RIP assays were performed with anti-EZH2 in lysates of KYSE-30 cells transfected with 

either pcDNA-HERES or HERES-Mut (left panel). The bar graph shows the relative amount 
of HERES after anti-EZH2 IP using lysates of cells transfected with either pcDNA-HERES 

or HERES-Mut (right panel). (C) RNA FISH to visualize HERES (red) and FITC staining of 

CACNA2D3 (green) in KYSE-30 cells transfected with pcDNA (upper panel), pcDNA-

HERES (middle panel), or HERES-Mut (lower panel). Nuclei were stained with 4′,6-

diamidino-2-phenylindole (DAPI) (blue). CACNA2D3 RNA (D) and protein (E) levels were 

measured in KYSE-30 cells transfected with pcDNA, pcDNA-HERES, or HERES-Mut by 

qRT-PCR and immunoblot, respectively. Data represent the mean ±  SD from three 

independent experiments (B and E). **P ≤ 0.01.  
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3.7. HERES as a candidate therapeutic target 

Contribution Statement: In this session, Hoin Kang (Catholic University) 

performed the xenograft assay, supervised by Eun Kyung Lee. 

  To investigate whether HERES controls tumor growth in vivo, we carried out 

xenograft assays with siControl- and siHERES-treated cancer cell lines (Fig. 38). 

Both the volume and weight of tumors derived from HERES-depleted samples 

were significantly reduced compared to tumors derived from control cells four 

weeks after the injection (Figs. 38A-C). We further examined changes in the 

expression of HERES and its target genes, finding that the reduction of HERES 

was maintained for four weeks after siHERES injection (Fig. 39), whereas the 

levels of HERES targets were significantly increased in tumor samples derived 

from HERES-depleted cells compared to control cells (Fig. 38D). We also 

confirmed that global H3K27me3 and EZH2 levels were decreased in HERES-

depleted tumor samples (Fig. 38D), suggesting that HERES is a promising 

candidate therapeutic target that controls tumor growth through the regulation of 

canonical and non-canonical Wnt signaling pathways in vivo (Fig. 38D). 
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Figure 38. Expression of HERES regulates tumorigenicity in xenograft models. 
KYSE-30 cells transfected with either siControl or siHERES were injected into nude mice 

(6 mice for each group). The resulting xenograft tumor volumes (A, B) and weights (C) are 

shown. (A) Tumor growth curves showing that tumors in the siHERES group grew markedly 

slower than those in the siControl group. (B) Images of tumor volumes from the xenograft 

models. (C) Tumor weights in the siHERES and siControl groups 4 weeks after cell injection. 

Data represent the mean ± SD. (D) Immunoblot analysis (#1 and #2) of levels of key 

components (CACNA2D3, SFRP2, and CXXC4) from the canonical and non-canonical Wnt 

signaling pathways and of H3K27me3 and EZH2 in the siHERES and siControl xenograft 

models. (E) A graphic illustration of HERES-regulated canonical and non-canonical Wnt 

signaling pathways in ESCC. 
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Figure 39. Expression of HERES before and 4 weeks after injection into nude mice. 
Relative HERES expression before (left panel) and 4 weeks after (right panel) injection into 

nude mice. HERES expression was measured in KYSE-30 cells transfected with a control 

siRNA (siControl) or HERES siRNA (HERES_1) or in the tumor mass formed by injection 

of the cells. 
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Chapter 4. Pan-cancer annotations of lncRNAs 
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4.1. Construction of integrative transcriptome maps 

To construct integrative transcriptome maps, large-scale RNA-seq datasets were 

obtained from the ENCODE Project (n=90), the Human BodyMap 2.0 Project 

(n=32), the TCGA Project (n=9,752), the GTEx Project (n=6,322), and the CCLE 

Project (n=935). A total of 17,131 RNA-seq samples were composed of 36 normal 

tissue types, 27 cancer paired with non-cancer tissue types, and 21 cell lines were 

collected (Fig. 40). To control RNA-seq data quality, samples with less than 40 

million uniquely mapped reads were excluded from downstream analysis (Fig. 41). 

Because most of RNA-seq samples were unstranded, the reads were converted to 

RPDs (pseudo-stranded) using CAFE (29). Remaining RNA-seq samples were 

each used to assemble individual transfrags with StringTie (15). Among the 

resulting transfrags, ones with an abnormal number of transfrags (smaller than 

50,000 transfrags or larger than 200,000 transfrags) were considered to be 

unreliable and were thus discarded. Meta-assembly was performed from 16,784 

RNA-seq assemblies according to types of cancer and tissue with TACO. Finally, 

cancer-/tissue-specific transcriptome maps were updated using CAFE pipeline 

(29). 
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Figure 40. RNA-seq datasets for construction of transcriptome maps. A total of 17,131 
RNA-seq samples comprising of 36 normal tissue types, 27 cancer paired with non-cancer 

tissue types, and 21 cell lines were used for constriction of transcriptome maps.  
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Figure 41. Construction of integrative transcriptome maps. A schematic flow for 

construction of cancer-/tissue-specific transcriptome maps from large-scale RNA-seq 

datasets. 
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4.2. Accuracies of transcriptome maps 

Normal tissue transcriptome maps originated from the GTEx Project contained 

110,000 transcripts with 2.5 isoforms per loci on average. Data from bladder 

generated the smallest transcriptome with 78,449 transcripts, while the one from 

testis had the largest number of transcripts (276,339) (Fig. 42). Testis 

transcriptome also shows abnormally high number of assembled loci and isoform 

per loci, while transcriptome build from other tissues mostly have more reasonable 

number. On the contrary, cancer transcriptomes created from TCGA datasets 

distinctively varied in terms of loci and transcripts. CHOL had the smallest 

transcriptome comprised of 90,319 transcripts (35,790 loci), while STAD had the 

largest transcriptome with 223,765 transcripts (95,663 loci). It is also worthy of note 

that unlike GTEx transcriptome, those built from TCGA datasets showed 

considerably different number of isoforms per loci, with the number being 2.2 for 

COAD and 3.2 for TGCT. 

To assess the quality of GTEx and TCGA transcriptome maps, recall and 

precision were calculated at base, intron, and splicing level against GENCODE v32 

annotation (Fig. 43). Apart from those generated from testis, GTEx transcriptome 

maps showed recall and precision rates of 91.4-97.9% and 72.7-86% on base level, 

respectively, which are higher than that of MiTranscriptome and BIGTranscriptome 

annotations. Most of TCGA transcriptome maps appeared to have recall rates 

similar to that of GTEx transcriptome maps (89.4-96.7%). However, transcriptome 

maps from BRCA, ESCA, KIRC, LUAD, OV, and STAD had exceptionally low 

precision on base level, ranging from 55.5-67.7% while other had higher precision 

rate of 71.2-87.7%. The six transcriptome maps and those of lung and testis from 
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GTEx also displayed lower precision rates on intron and splicing levels. Based in 

the assembled transcript models, it is suspected that the quality of RNA-seq is 

compromised to some extent due to DNA contamination. Other samples precision 

rates of 80.9-89.2% on intron level and 32.8-46.5% on splicing level, which are by 

far higher than all other previously reported transcriptome annotations. 
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Figure 42. The GTEx and TCGA transcriptome maps. The number of reconstructed 

transcripts and their loci in each tissue and cancer types. 
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Figure 43. The annotation accuracy of transcriptome maps. Shown are the accuracies 

of transcriptome maps at base, intron, and splicing levels based on GENCODE v32 

annotation. 
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4.3. Annotation of novel lncRNAs in pan-cancer 

To annotated novel lncRNAs from reconstructed transcriptome maps, we 

performed lncRNA annotation as mentioned in the Section 3.1.1. The number of 

novel lncRNAs annotated was varied between the GTEx and TCGA transcriptome 

maps (Fig. 44). The least number of novel lncRNAs (588 and 1279 lncRNAs) were 

annotated from bladder and CHOL, on the other hand, the largest number of novel 

lncRNAs (59,142 and 49,941 lncRNAs) were annotated from testis and STAD, 

respectively. The latter two samples were found to have large numbers of novel 

lncRNAs due to abnormally enormous number of transcripts assembled in the 

previous step. Skin and SKCM also showed relatively huge numbers of novel 

lncRNAs, however, their assembled number of transcripts were comparable to the 

others. The average isoform per loci ratio in novel lncRNAs were 1.2 and 1.3 in 

GTEx and TCGA, respectively. LUAD from TCGA and brain from GTEx showed 

the highest isoform per loci ratio compare to the other samples. 

The completeness, or the proportion of full-length genes was checked for both 

GTEx- and TCGA- originated novel lncRNAs (Fig. 45). LncRNA genes supported 

by both CAGE-seq (TSS) and 3P-seq (CPS) tags were considered as full-length 

genes. Same analysis was also done for lncRNA annotations for GENCODE, 

MiTranscriptome, BIGTranscriptome, FANTOM CAT, and CHESS, 13%, 4%, 21%, 

18%, 14% of which were full-length lncRNA genes, respectively. Meanwhile, 

except for testis novel lncRNAs, 18-24% of GTEx novel lncRNA maps appeared to 

be full-length lncRNA genes, indicating their completeness. TCGA novel lncRNAs 

also had considerably higher proportion of full-length lncRNA genes, from 16~25%, 

with the exception for six cancer types (BRCA, ESCA, KIRC, LUAD, OV, and 
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STAD). Overall, it can be concluded from the results that both TCGA and GTEx 

novel lncRNA maps are so far the most accurate annotation.  
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Figure 44. Pan-cancer atlas of novel lncRNAs. The number of annotated novel lncRNAs 

and their lncRNA genes from reconstructed transcriptome maps. 

 

Figure 45. The completeness of novel lncRNAs. The fraction of novel lncRNAs 

supported with both TSS and CPS (purple), with either TSS or CPS (blue), and with neither 

TSS or CPS (grey). 
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Chapter 5. Discussion 

A high-performing transcriptome assembly pipeline, CAFE, enabled us to 

significantly improve the quality of the resulting assemblies by resurrecting large-

scale unstranded RNA-seq data, which was formerly used for less informative or 

less specific transcriptome assembly. The re-use of the large-scale unstranded 

RNA-seq data is valuable in following three reasons. For example, public 

transcriptome databases, such as the TCGA Project (25, 26), the GTEx Project 

(24), the CCLE Project (23), and NCBI GEO, include large-scale unstranded RNA-

seq data. Hence, determining the directions of unstranded reads enables the 

construction of highly accurate transcriptome maps, which is necessary for highly 

qualitative downstream analyses. Although determining the directions of 

unstranded reads requires stranded data in the corresponding cell type or tissue, 

the use of pooled stranded data can still be of benefit to the prediction of transcript 

direction and the following assembly. In fact, the RPDs of unstranded TCGA, GTEx 

and CCLE data were predicted using pooled stranded RNA-seq data and showed 

high accuracy (Fig. 43). Secondly, in the case of genes with low expression such 

as those encoding lncRNAs, additional RPDs benefit transcriptome assembly by 

increasing the read-depth of those genes. Although the targeted capture of low-

abundant transcripts like lncRNAs using antisense oligonucleotides enabled an 

increase in the copy number of the target transcripts (76), this approach is only 

applicable to known transcripts. Thirdly, additional RPDs could increase the 

detection of missed exon-junctions, resulting in the connection of fragmented 

transfrags. 
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We utilized CAGE-seq and 3P-seq data to profile transcript TSSs and CPSs, 

which detect unambiguous ends at single base resolution as well as transcript 

alternative forms. However, the assignment of multiple TSSs and CPSs raises a 

question: which pairs of ends, in all possible combinations, are relevant? Moreover, 

if a gene has alternative splicing isoforms, the number of possible isoforms is 

exponentially increased by multiple TSSs and CPSs. CAFE now generates all 

possible but unique isoforms, some of which would not actually exist in cells. 

Therefore, a precise way to determine a TSS-CPS pair simultaneously would 

provide biologically relevant isoforms directly. One approach is to integrate paired-

end ditag (PET) data that contains both 5’ and 3’ end sequence tags of transcripts 

(6) and an alternative is to sequence full-length RNAs using third-generation 

sequencing methods such as Iso-seq (77). 

Applying CAFE pipeline to RNA-seq datasets of ESCC patients successfully 

identified a novel ESCC-driving lncRNA, HERES. A series of computational and 

experimental analyses showed that HERES transcriptionally controls multiple 

target genes in the Wnt signaling pathways at the epigenetic level by interacting 

with the EZH2-PRC2 complex. Because the targets and HERES are generally 

located on different chromosomes, HERES appears to act via EZH2-PRC2 in trans 

rather than in cis. Intriguingly, HERES RNA contains some repeat elements 

including GGW and Alu repeats, which extensively match sequences in the 

upstream regions of the target genes including CACNA2D3. Particularly, the Alu 

repeats would provide complementary base-pairing between HERES its target 

DNA sequences as well as it might be related to the nuclear localization of HERES, 

as previously reported (78). 
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  Albeit we reported in this study that a G-rich motif in HERES is important for 

binding to EZH2, it remains unclear which part of EZH2 interacts with HERES. A 

previous study showed that the N-terminal region of EZH2 is important for RNA 

binding through a G-rich motif (79). A series of deletion mutants of human PRC2 

revealed that the basic N-terminal helix of EZH2, particularly residues 32-42 in the 

helix, are the most critical for RNA binding through a G-rich motif. Given these 

results, the G-rich motif embedded in HERES probably also interacts with the basic 

N-terminal helix of EZH2, although such a direct interaction needs to be verified. 

  Transcription factor ChIP-seq data from the ENCODE Project revealed that the 

first HERES exon contains some enhancer-related transcription factor binding sites 

(TFBSs) for CEBPB, EP300, and AP-1 subunits (JUN, FOS), suggesting that 

HERES could be regulated epigenetically by modulation of the chromatin state at 

its locus. On the other hand, the expression of HERES near enhancer-related 

TFBSs raises the possibility that HERES is an enhancer RNA (eRNA) that 

regulates neighboring genes in cis. However, two observations argue against this 

idea: first, HERES is highly abundant and includes both a 5’ cap and 3’ 

polyadenylation, unlike eRNAs, and second, the genes neighboring HERES were 

only marginally affected by siHERES transfection. 

  Although there have been reports that some lncRNAs participate in regulating 

the Wnt signaling pathway, their targets appear limited (80). Our results suggest 

that HERES could be a master regulator of the Wnt signaling pathway, because it 

controls key components of both canonical and Ca2+-related non-canonical 

pathways (Fig. 38E). Our results highlight the potential significance of HERES in 

terms of targeted therapy.  
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Supplementary Materials 

Datasets. RNA-seq data used throughout this study were either from newly 

sequenced material or downloaded from public databases. A pair of stranded and 

unstranded RNA-seq datasets from mES cells were newly sequenced (GSE84946) 

and 169 publicly available samples of stranded and unstranded RNA-seq data from 

diverse cell types, including HeLa cells, were downloaded from the ENCODE 

Project (www.encodeproject.org) and Human BodyMap 2.0 Project 

(www.broadinstitute.org). To collect data produced by a similar library construction 

method, samples were selected with the following criteria: 1) samples with poly-A 

selection applied; 2) samples with stranded RNA-seq data passing a quality control 

filter (such that the precision of the stranded assembly is equal to or greater than 

45%); 3) samples with unstranded RNA-seq and stranded RNA-seq data from the 

same cell type. After filtration, 122 RNA-seq samples across 35 cell types were 

analyzed for transcriptome assembly. In addition, 17,009 unstranded RNA-seq 

samples from 36 normal tissue types, 27 cancer paired with non-cancer tissue 

types, and 21 cell lines were downloaded from the GTEx Project 

(http://www.gtexportal.org) and the GDC data portal (the TCGA and CCLE Projects; 

https://portal.gdc.cancer.gov). The data were filtered with the same criteria above. 

RNA-seq data from paired non-cancer and cancer samples from 23 Korean 

esophageal squamous cell carcinoma (ESCC) patients were obtained during this 

study (GSE130078) and RNA-seq data from 30 Chinese ESCC samples were 

downloaded from the NCBI Sequence Read Archive (SRA) 

(www.ncbi.nlm.nih.gov/sra/) under accession number SRP064894. CAGE-seq 

processed data across 17 tissues for human and 23 tissues for mouse were 
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downloaded from the FANTOM Project (www.fantom.gsc.riken.jp). CPS data from 

different cell types (HeLa, HEK293, Huh7, and IMR90 for human; mES, 3T3, liver, 

muscle, heart, white adipose tissue, and kidney for mouse) were downloaded from 

NCBI Gene Expression Omnibus (GEO) (GSE52531). 

Processing of RNA-seq data. To check RNA-seq data quality, RNA-seq reads 

were mapped to the corresponding reference genomes (hg19 for human and mm9 

for mouse) using Bowtie (version 1.0.0) with default parameters. We calculated 

mismatch rates across the mapped read positions. If the raw read end(s) had a 

mismatch rate higher than 10%, they were trimmed off using Seqtk (version 1.0-

r31). In addition, the trimmed reads with Phred base quality ≤ 20 were filtered using 

Sickle (version 1.200). The remaining reads were mapped to the corresponding 

reference genomes using STAR (version 2.5.2b) with mapping parameters “--

alignIntronMin 61 --alignIntronMax 265006 --outFilterMultimapNmax 20” for human 

and “--alignIntronMin 52 --alignIntronMax 240764 –outFilterMultimapNmax 20” for 

mouse. 

Base transcriptome assembly. Base transcriptome assemblies were performed 

using Cufflinks (version 2.1.1) with assembly parameters “--min-isoform-fraction 

0.15 --pre-mrna-fraction 0.2 --junc-alpha 0.001 --small-anchor-fraction 0.06 --min-

frags-per-transfrag 12 --max-multiread-fraction 0.65” for unstranded reads and “--

min-isoform-fraction 0.05 --pre-mrna-fraction 0.2 --junc-alpha 0.01 --small-anchor-

fraction 0.09 --min-frags-per-transfrag 8 --max-multiread-fraction 0.65” for 

stranded reads. 

Benchmarking base assembly. To evaluate the performance of CAFE with other 
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base assemblers, we performed reference-based assembly using Scripture (a beta 

version) with the default parameter and StringTie (version 1.3.0) with the parameter 

“-m 0 -j 2 -g 50 -M 0.75” and de novo transcriptome assembly using Trinity (version 

20140717) with the parameter “--min_contig_length 200” and Velvet (version 

1.2.10) with the parameter “-hash_length 25 -min_contig_lgth 50”. For 

benchmarking of reference-based assemblers (Scripture, Cufflinks, and StringTie) 

and de novo assemblers (Trinity and Velvet), each base assembler assembled 

transcriptomes using stranded and unstranded reads, respectively, and their 

averaged performance (recall and precision) was measured and then compared to 

the performance of CAFE in the co-assembly of RPDs and stranded reads. 

PacBio transcriptome assembly. To assemble the transcriptome from PacBio 

Iso-seq data, we downloaded data from human MCF7 cell lines sequenced with a 

total of 119 SMRT cells from the PacBio website (81). For subsequent analysis, we 

used the ‘Iso-seq’ protocol from the SMRT Portal provided by PacBio. Using the 

filtering module in the ‘Iso-seq’ protocol, we acquired 1,857,590 reads of insert from 

Iso-seq data. In this step, we set parameters as “Minimum_Full_Passes 0 

Minimum Predicted Accuracy 75”. Next, the classify module filtered about two-

thirds of the reads of insert from the above with parameters set as 

“Minimum_Sequence_Length 300 Full-Length_Reads_Do_Not_Require_PolyA_ 

Tails False”, leaving 524,084 full-length reads. The last module was the cluster 

module, which left 80,010 polished isoforms with “Predict_Consensus_Isoforms_ 

Using_The_ICE_Algorithm True Call_Quiver_To_Polish_Consensus_Isoforms 

True Minimum_Quiver_Accuracy_To_Classify_An_Isofrom_AS_HQ 0.99” 

parameters. Finally, GMAP (version 2015-07-23) was used with parameters “-f 
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samse -n 0” to map to the human genome, hg19. The final assembled set 

contained 47,416 non-redundant transcripts (15,688 genes). 

Reference gene annotations. Among the protein-coding and lncRNA genes from 

GENCODE annotations (human: version 19 for Sections 2 and 3, or version 32 for 

Section 4, mouse: version M1), those with over 1 fragments per kilobase of exons 

per million mapped reads (FPKM) in the corresponding types of cell, tissue, or 

cancer were selected. To build a bona fide lncRNA gene set, we performed the 

following filtration steps: (1) transcripts shorter than 200nt in length were discarded, 

and (2) lncRNAs sense-overlapping with exons of known protein-coding genes and 

noncoding genes (small ncRNAs including miRNAs, snRNAs, and snoRNAs and 

structural ncRNA genes including rRNAs and tRNAs) were excluded. The 

references were used to evaluate the quality of the transcriptome assemblies. 

Evaluation of transcriptome assembly. To evaluate the quality of transcriptome 

assembly, we compared the resulting assembly with the reference gene 

annotations (protein-coding and lncRNA genes, respectively) using in-house script. 

The recall and precision were estimated at the base, intron and splicing levels of 

the assembled transfrags. 

Evaluation of full-length genes and isoforms. To evaluate how many full-length 

genes and isoforms were assembled, we collected the transcripts that 

simultaneously included a TSS in the first exon and a CPS in the last exon of the 

resulting transfrags. In addition, the transcripts aligned to the reference transcripts 

with at least a 95% match were regarded as full-length transcripts. At the gene 

level, gene models that unified all isoform exons were compared. 
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Expression profiling of lncRNAs. Gene-/isoform-level expression values of the 

known and novel lncRNAs were calculated with BAM files from the YSH (23 paired 

samples) and Chinese (15 paired samples) cohorts and with RPD- converted BAM 

files from the TCGA (95 tumor samples) and GTEx (328 normal samples) cohorts 

using featureCounts (version 1.5.1) with parameters “--minOverlap 60 -s 2 -p -B -

C” and RSEM (version 1.3.0) with parameters “--strandness reverse --mapper star 

--estimate-rspd”. 

Differentially expressed (DE) lncRNAs in multiple ESCC cohorts. To identify 

lncRNAs that were commonly dysregulated in ESCCs from ethnically independent 

cohorts, we first identified lncRNAs that were significantly DE [≥ two-fold difference 

with a false discovery rate (FDR) ≤ 0.01] between cancerous and non-cancerous 

samples in each cohort using DESeq2. Tumor sample data from TCGA and normal 

esophagus data from GTEx were compared. DE lncRNAs common to all three 

ESCC cohorts were selected and were considered to be ethnically independent 

DE lncRNAs.  

Cellular and genomic characterization of lncRNAs. To investigate lncRNA 

subcellular localization patterns, RNA-seq data from nucleus and cytoplasm-

fractionated samples from eight different cell lines (A549, GM12878, H1-hESC, 

HeLa-S3, HepG2, K562, MCF-7, and SK-N-SH) were downloaded from the 

ENCODE Project (www.encodeproject.org) and processed to produce BAM files, 

which were then used to calculate lncRNA expression levels. The subcellular 

localization ratio (SLR; the ratio of expression in the nucleus versus cytosol) was 

calculated for lncRNAs that are expressed at greater than 1 FPKM in either the 
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nucleus or cytosol in each cell type. LncRNAs were divided into five classes 

according to the SLR in the eight cell types. LncRNAs that were enriched in the 

nucleus (SLR ≥ 1.5; “nucleus”) or cytosol (SLR ≤ 0.5; “cytosol”) were classified 

accordingly. LncRNAs with a comparable ratio in the nucleus and cytoplasm (0.5 

< SLR < 1.5) over all cell types were classified as “both”. If a lncRNA showed a 

different SLR in at least one cell type versus the others, it was labeled as 

“differentially localized”. LncRNAs that were not expressed in all cell types were 

classified as “unidentified”. 

  To annotate enhancer-associated lncRNAs, enhancer annotations from normal 

esophageal and cancer cell lines (A549, HeLa-S3, HepG2, K562 and MCF-7) were 

downloaded from EnhancerAtlas (http://www.enhanceratlas.org). Among the 

lncRNAs that were expressed at greater than 1 FPKM in each cell line, those that 

overlapped with an enhancer region in at least one cell type were classified as 

enhancer-associated lncRNAs. 

DNA methylation analysis. DNA methylation data from 95 ESCC samples were 

downloaded from the GDC data portal (the TCGA Project; 

https://portal.gdc.cancer.gov) in processed form (Data level 3). Beta values of DNA 

methylation in each sample were reassigned to the transcriptome newly 

constructed from RNA-seq data from the YSH cohort. Then, for each gene, the 

median beta values observed in promoter regions were measured for each ESCC 

sample. 

Survival analysis. Clinical information from the YSH cohort was obtained from 

YSH and information from the TCGA cohort was downloaded from the GDC data 
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portal (https://portal.gdc.cancer.gov). For association with the clinical information 

for the YSH cohort, RNA levels were measured from 66 cancerous tissue samples, 

including 23 for RNA-seq, by qRT-PCR. Stage-free survival analyses were 

performed for YSH and TCGA patients with termination events using the Kaplan-

Meier estimate. P values were estimated using the log-rank (Mantel-cox) test. 
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국문요지 

 
고정밀 전사체 지도 작성 및 다양한 암종에서 긴 비번역 RNA 분석 

 

유보현 

자연과학대학 생명과학과 

한양대학교 

 

RNA 염기서열분석 (high-throughput RNA sequencing; RNA-seq) 기술의 

출현과 발전으로, 이를 기반으로 하여 전사체 지도를 재구성하고 새로운 

유전자를 동정하는 연구가 지속적으로 이루어지고 있다. 전사체의 상당 

부분은 비번역 RNA 로 구성되어있고, 이들 중 긴 비번역 RNA (long 

noncoding RNA; lncRNA)는 다양한 생물학적 현상에서 중요한 기능을 하는 

것으로 알려졌다. 기존의 전사체 지도들은 새로운 lncRNA 동정을 통해 

전사체의 다양성과 복잡성을 이해하는데 많은 기여를 했지만, 방향성이 없는 

RNA-seq (unstranded RNA-seq) 데이터를 사용하여 여전히 불완전하고 많은 

오류를 포함하고 있다. 따라서 우리는 전사체 지도의 정확도를 높이기 위해 

고성능 전사체 재구성 파이프라인 CAFE 을 개발했다. CAFE 파이프라인은 

최대우도추정을 통해 unstranded RNA-seq 데이터의 방향성을 예측하고, 

재구성된 전사체의 5’과 3’ 끝부분을 교정하여 전사체 지도를 재구성한다. 

ENCODE 프로젝트의 대규모 RNA-seq 데이터에 CAFE 파이프라인을 

적용하여 이전의 전사체 지도들과 비교하여 더 정확하고 다양한 고정밀 

전사체 지도 BIGTranscriptome 을 재구성했다. 

CAFE 파이프라인을 다양한 집단 (한국인, 중국인 그리고 서양인)의 식도 

편평상피세포암 (ESCC) 환자들에서 생산된 RNA-seq 데이터에 활용하여 

전사체 지도를 재구성했다. 그 결과, 1,924 개의 새로운 lncRNA 들을 동정하고, 

이들 중 다양한 집단에서 공통적으로 비정상적 발현을 하는 113 개의 
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lncRNA 들을 찾았다. 6 개의 lncRNA 들은 ESCC 환자들의 임상 정보와 

유의미한 관련성을 나타냈고, 이들을 통해 ESCC 환자들을 예후에 따른 

4 개의 그룹으로 분류할 수 있었다. 본 연구에서 새롭게 동정한 lncRNA 을 

HERES 로 명명하고, in vitro 와 in vivo 실험을 통해 HERES 가 ESCC 의 

발생과 분화를 촉진하는 것을 확인했다. 또한, HERES 가 EZH2 와 상호 

작용을 통해 Wnt 신호전달 체계에 중요한 요소인 CACNA2D3, SFRP2 와 

CXXC4 의 발현을 동시에 조절하는 것을 밝혔다. 

마지막으로 16,000 개 이상의 대규모 RNA-seq 데이터를 확보하여 암과 

조직에 특화된 전사체 지도를 재구성했다. 전사체 지도에는 새롭게 동정한 

lncRNA 들과 암과 조직에서 특이적으로 발현되는 lncRNA 들이 다수 포함되어 

있었다. 

결과적으로 CAFE 파이프라인을 통해 정확한 전사체 지도의 재구성이 

가능하고, 이를 기반으로 번역과 비번역 전사체의 다양성과 복잡성을 

이해하며, 이는 HERES 와 같이 암의 진단과 치료에 활용할 수 있는 바이오 

마커와 치료 타겟을 발굴하는데 큰 도움을 줄 것 이다. 
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