Molecular Biology Laboratory

Bioinformatics and Genomics Lab.

2. Protein Sequence Alignment (BLAST, Clustal Omega) & Domain Search

BioInformatics and Genomics

TA Jihoon Kim, Junseob Han

Contact

Jihoon Kim 010.6628.1102 cjscjs1102@hanyang.ac.kr

- 1. To know how to get information of protein (UniProt, Pfam, RCSB PDB)
- 2. To know how to analyze the sequence data of protein (BLASTX, Clustal Omega)
- 3. To know how to find domain information of protein

Proteins

HPP Progress to Date, HUPO, 2022

- Proteins account for the second largest proportion of the body after water and they have unique functions like body composition, hormone, immune response, and et cetera
- Proteins consist of 20 amino acids and these amino acids are connected with a peptide bond
- Many researchers are working hard to find proteins and their functions
 - Human Proteome Project (HPP) is in progress to discover all human proteins and their functions

Protein Database

- There are three commonly used protein database
 - UniProt: The largest protein database (Verified: 568,002, Expected: 226,771,949)
 - Search "UniProt" in google or use hyperlink https://www.uniprot.org/
 - Pfam: The database which is based on UniProt and it is sorting proteins by protein family
 - Search "Pfam" in google or use hyperlink https://pfam.xfam.org/
 - RCSB PDB: The database which focuses on protein's structure
 - Search "RCSB PDB" in google or use hyperlink https://www.rcsb.org/

Protein Sequence Alignment - BLASTX

- "BLASTX" is one of the tools which is contained in "BLAST" program
- "BLASTX" is used for comparing nucleotide sequence (query) and amino acid sequence (subject)
- "BLASTX" changed nucleotide sequence to amino acid sequence with 6 frames and alignment to amino acid sequence
 - 3 "+" strand frame & 3 "-" strand frame

Protein Sequence Alignment - Clustal Omega

- "Clustal Omega" is used for multiple sequence alignment
- It is basically used for protein sequence alignment, but DNA and RNA sequence alignment is also possible

Clustal Omega							
Input form	Web services	Help & Documentation	Bioinformatics Tools FAQ	🗣 Feedback			
Tools > Multiple Sequence Alignment > Clustal Omega							
Multiple Sequence Alignment Clustal Omega is a new multiple sequence alignment program that uses seeded guide trees and HMM profile-profile techniques to generate alignments between three or more sequences. For the alignment of two sequences please instead use our pairwise sequence alignment tools. Important note: This tool can align up to 4000 sequences or a maximum file size of 4 MB.							
STEP 1 - Enter your input sequences							
Enter or paste a set of							
PROTEIN							
sequences in any supported format:							
				1.			
Or, upload a	a file: 파일 선택	선택된 파일 없음	Use a	example sequence Clear sequence See more example inputs			

Protein Domain

- Domains are distinct functional structural units in proteins
- Each domain forms a compact 3D structure and they have a unique function
 - RNA binding domain, Zinc finger DNA binding domain, etc.
- Protein domain information can be found in "UniProt" database or "NCBI Conserved Domains"
 - "NCBI Conserved Domains" needs "FASTA" format sequence data of proteins
 - Search "NCBI conserved domain" in google or use the hyperlink

https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi

S NCBI		eTFTMKEVIYHLGOVIMAKGLYDe eTY Conserved of Ly g pQL ² Domains WK sQL2 SH2 SH2 SH2 SH2 SH2 SH2 SH2 SH	1/735272(0/ 150 12330/2 1985 1 27379565
HOME SEARCH GUIDE	Structure Home	3D Macromolecular Structures	Conserved Domains
Enter protein or nucleotide q Search.	Search for <u>Conser</u> uery as accession, gi, or sequence in <u>FASTA for</u>	ved Domains within a protein or coding nucleon mat. For multiple protein queries, use Batch CD- OPTIONS Search against database Expect Value [®] thresho Apply low-complexity fi Composition based stat Force live search [®] □ Rescue borderline hits Maximum number of hi Result mode [®] Concise	tide sequence

- 1. Practice how to use UniProt database
 - Find information on GFP and get a amino acid sequence
- 2. Practice how to use Clustal Omega
 - Try multiple sequence alignment (MSA) of GFP, CFP, YFP, and RFP
- 3. Practice how to find protein domain
 - Find sequence and domains of TP53 using "UniProt"
 - Find domains of TP53 using "NCBI Conserved Domain Search"