Session 11. PRACTICE

A slimy molecule

Basic Shell Commands – xShell 을 통해 서버 접속

```
$ cd [User_Folder]
$ mkdir Session11
$ cd Session11
```

Basic Shell Commands

\$ cp -r /home/biguser/tutor/Session11/sysModule_example .

\$ cd sysModule_example/

Sys arguments

\$ vi sysargv.py

```
import sys
for i in sys.argv:
    print i
infile1= open(sys.argv[1])
infile2= open(sys.argv[2])
infile3= open(sys.argv[3])
def readfile(filename):
    for line in filename:
        print line
readfile(infile1)
readfile(infile2)
readfile(infile3)
```

Sys arguments

\$ python sysargv.py file1.txt file2.txt file3.txt

(py27) [biguser@R440 sysModule_example]\$ python sysargv.py file1.txt file2.txt file3.txt
sysargv.py
file1.txt
file2.txt
file3.txt
Today is Wednesday
2022-11-15
Bioinformatics

Sys exit

\$ vi sysexit.py

```
import sys
for i in range(1,21):
    print i

print '-----'
for i in range(1,21):
    if i==15:
        sys.exit()
    else:
        print i
```

Sys exit

\$	python	<pre>sysexit.py</pre>
----	--------	-----------------------

\$ cd ..

[kyungtae@biglab-master sysModule_example]\$ python sysexit.py

[kyungtae@biglab-master sysModule_example]\$

Counting specific amino acid in sliding windows Code 13.1 -- pts.py (\$ vi pts.py)

#!/usr/bin//python	<pre># Now analyze the sequence in \$seq</pre>
import re	
import sys	<pre>print 'Position\tProline\tThreonine\tSerine'</pre>
# Basic parameters used	<pre>for i in range(0, len(seq) - wid+1, step):</pre>
	test - seg[i:i + wid]
wid = 100 # size of staing window	test - sed[1.1 + wid]
step = 1 # size of step to move situring window	# Count proline threenine and serine
# check if argument to the script is there	# count protine, threohine and serine
# check if a gument to the script is there.	coupt p = float(test coupt('P')) / wid
if len(sys.argy) > 1:	$count_p = float(test.count(T)) / wid$
file = svs.argv[1]	$count_s = float(test.count('f')) / wid$
else:	pos = i + 1 + vid / 2
exit('File in FASTA sequence format is to be used as argument to the script'	pos = 1 + 1 + wid / 2
)	princ pos, (c, count_p, (c, count_c, (c, count_s
<pre># read the sequence from the input file</pre>	
Seg = ''	
id = ''	
<pre>for line in open(file):</pre>	
line = line.rstrip()	
w in the identified line old in contained	
# in the vanishle 'id' except for	
# the N character	
# the v that acter	
<pre>match = re.search('>(.*)', line)</pre>	
if match:	
<pre>id = match.group(1)</pre>	
else:	
seq = seq + line	

Code 13.1 pts.py

\$ cp /home/biguser/tutor/Session11/muc6.fa .

\$ python pts.py muc6.fa

\$ python pts.py muc6.fa > pts.out

	ч	7		Positio	ı	Proline	Threonine	Se
	Ş	less	pts.out	51	0.05	0.08	0.11	
				52	0.05	0.08	0.11	
l				-53	0.05	0.08	0.11	
				54	0.05	0.08	0.11	
				55	0.05	0.08	0.12	
				56	0.05	0.08	0.12	
				57	0.05	0.08	0.12	
				58	0.05	0.09	0.12	
				59	0.05	0.09	0.12	
				60	0.05	0.09	0.12	
				61	0.05	0.09	0.12	
				62	0.05	0.09	0.12	
				63	0.05	0.09	0.12	
				64	0.05	0.09	0.12	
				65	0.05	0.09	0.13	
				66	0.05	0.09	0.13	
				67	0.05	0.09	0.12	
				68	0.05	0.09	0.12	
				69	0.05	0.09	0.12	
				70	0.05	0.09	0.12	
				71	0.05	0.09	0.12	

erine

\$ cp /home/biguser/tutor/Session11/pts.r
\$ vi pts.r

```
# read information from output from Python script
data <- read.table("pts.out", sep = "\t", header = TRUE)</pre>
```

```
# make an empty plot
```

}
dev.off()

draw lines for Proline, Serine and Threonine data

```
# make a legend
legend(50, 0.4, c("Thr", "Ser", "Pro"), col = c("red",
      "green", "blue"), lwd = 2)
```

```
# add a line indicating the 40% / 5% cutoff
```

```
len <- length(data$Position) # number of lines in the file
for (i in (1:len)) {
    if (((data$Serine[i] + data$Threonine[i]) > 0.4) && (data$Proline[i] >
        0.05)) {
        points(i, 0, col = "darkgrey")
    }
```

type

what type of plot should be drawn. Possible types are

- "p" for points,
- "1" for lines,
- "b" for both,
- "c" for the lines part alone of "b",
- "o" for both 'overplotted',
- "h" for 'histogram' like (or 'high-density') vertical lines,
- "s" for stair steps,
- "S" for other steps, see 'Details' below,
- "n" for no plotting.

```
$ R

> source("pts.r")
Or

$ Rscript pts.r
```

III Most name or IP address									• 14	Int name	Password	
바람화면 ~			1.1	• 166.104.138.232	166.104.138.232							
in			- 80	Name			Size	Type	Modified	Attributes	Owner	
am ()	502 Type 시스트립 시스트립 시스트립 시스트립 시스트립 시스트립 지스트립 시스트립 파일 목록 교육 목록 <	ModRed 1997-01-01, 221 6 1997-01-01, 221 6 1997-01-01, 221 6 1997-01-01, 221 6 2018-10-21, 221 6 2018-10-21, 221 1 2018-10-12, 221 1 2018-10-12, 221 1 2018-10-12, 221 1 2018-10-12, 221 1 2018-10-16, 228 2 2018-10-05, 228 1 2018-02-16, 221 6 2018-02-16, 221 6 2018-02-16, 228 1 2018-02-16, 228 1		■ Testeres	Tranter Download to Default I Cucuo Coron Edit with Norspad C) Coper Edit with Norspad C) Coper Resame Delete Charge Permissions Properties	Cb1+C Cb1+V	29488 894 8yt 1K8 51K8 2K8	Adobe - 유파일 PY 파일 OUT 파일 fASTA S- 파일 뿐이	2018-11-12, 2 # 1, 1 2018-11-10, 2 # 1, 2 2018-11-12, 2 # 1, 2	-the-the-t -tw-the-t -the-the-t -the-the-t -the-the-t denotemet	kyungtae kyungtae kyungtae kyungtae kyungtae	
Slack UW VPN	2KB 바로 가기 2KB 바로 가기 2KB 바로 가기	2018-10-05, 오후 1 2018-04-19, 오후 1 2018-01-16, 오후 1	J									

Mouse right click and click open from "Rplot.pdf"

Efficient programming

The counting of amino acids in Code 13.1 is not optimal as we are analyzing overlapping windows of the mucin sequence and are therefore examining the same amino acid positions several times. Modify Code 13.1 to avoid this situation.

Example of efficient programming


```
import re
import sys
wid = 100
step = 1
if len(sys.argv) > 1:
    file = sys.argv[1]
    exit('File in FASTA sequence format is to be used as argument to the script')
seg = ''
1d = **
for line in open(file):
   line = line.rstrip()
    match = re.search('>(.*)', line)
    if match:
        id = match.group(1)
   else:
        seq = seq + line
print "Position", '\t', "Proline", '\t', "Threonine", '\t', "Serine"
test = seq[0:0+wid]
count p = test.count('P')
count_t = test.count('T')
count_s = test.count('S')
frac p = float(count p) / wid
frac_s = float(count_s) / wid
frac t = float(count t) / wid
pos = 1
print pos + wid/2, '\t', frac p, '\t', frac t, '\t', frac s
for i in range(1, len(seq) - wid+1, step):
    minus = seq[i-1]
    plus = seq[i + wid-1]
    minus p = minus.count('P')
    minus s = minus.count('S')
    minus t = minus.count('T')
    plus_p = plus.count('P')
    plus_s = plus.count('S')
    plus_t = plus.count('T')
    count_p = count_p - minus_p + plus_p
    count_s = count_s - minus_s + plus_s
    count t = count t - minus t + plus t
    frac p = float(count p) / wid
    frac s = float(count s) / wid
    frac t = float(count t) / wid
    pos = i + 1
   print pos + wid/2, '\t', frac_p, '\t', frac_t, '\t', frac_s
```

Exercise 13.1

 In Code 13.1 we count amino acids using the count operator. Modify the script to show that the counting could also be carried out using either of "re.findall()" and "re.subn()":

Exercise 13.1

```
for i in range(0, len(seq) - wid, step):
    test = seq[i:i + wid]
    count_p= re.findall("P", test);count_p = len(count_p); count_p= float(count_p)/ wid
    count_t= re.findall("T", test);count_t = len(count_t); count_t= float(count_t)/ wid
    count_s= re.findall("S", test);count_s = len(count_s); count_s= float(count_s)/ wid
    pos = i + 1 + wid/2
    print pos, '\t', count_p, '\t', count_t, '\t', count_s

for i in range(0, len(seq) - wid, step):
    test = seq[i:i + wid]
    count_p = re.subn('(P)', '', test) ; count_p = float(count_p[1]) / wid
    count_t = re.subn('(T)', '', test) ; count_t = float(count_t[1]) / wid
    count_s = re.subn('(S)', '', test) ; count_s = float(count_s[1]) / wid
    pos = i + 1 + wid/2
    print pos, '\t', count_p, '\t', count_t, '\t', count_s
```

Assignment

The mucin sequence analyzed in Code 13.1 (muc6.fa) contains repetitive sequences. Construct a Python script to examine every possible word of size four (i.e. every sequence of four consecutive amino acids) and count the number of times that word occurs in the mucin sequence. What are the top5 most common four-letter word and how many times do they occur in the mucin MUC6?
 힌트 -> dictionary 활용 + sorted

제출기한: 11/21 (월요일) 오후 6시까지