SESSION 7. PRACTICE

Evolution: What makes us human?

A protein related to human speech: FOXP2

A protein related to human speech: <u>Foxp2</u>

- Foxp2 contains a <u>forkhead box DNA binding</u> <u>domain</u>, is expressed in CNS during development, and is likely to regulate a number of genes of importance for brain function.
- Foxp2 is fairly well conserved in all vertebrates and <u>mutations in the Foxp2 gene</u> <u>cause speech deficiency.</u>

R553H (arginine -> histidine) in the Foxp2 is a.a. change in the DNA binding domain and **R328X** (arginine -> any amino acid) is nonsense mutation.

 Both copies are required for normal function (dominant phenotype).

FOXP2 in other animals

- □ FOXP2 seems to be related in synaptic plasticity (for motor-skill learning).
- Bird song has similarities and differences to human speech.
- Expression of FOXP2 in zebra finch was reduced to 50% of its normal level and the bird is not efficient for sound-imitation.

Basic Shell Commands

```
$ cd [User_Folder]
$ mkdir week7_7
```

```
$ cd week7_7
```

FOXP2_HUMAN	Homo sapiens	
FOXP2_GORGO	Gorilla gorilla	
FOXP2_MACMU	Macaca mulatta (Rhesus macaque)	
FOXP2_PANTR	Pan troglodytes (Chimpanzee)	P
FOXP2_HYLLA	Hylobates lar (Common gibbon)	
FOXP2_PONPY	Pongo pygmaeus (Bornean orangutan)	
FOXP2_MOUSE	Mus musculus (Mouse)	4
FOXP2_XENLA	Xenopus laevis (African clawed frog)	

\$ ln -s /home/biguser/tutor/Week6/swissprot.* .

[biguser@biglab-master session_7]\$ ls swissprot.phr swissprot.pnd swissprot.psd swissprot.psq swissprot.pin swissprot.pni swissprot.psi

\$ vi seqids.txt

FOXP2_HUMAN FOXP2_GORGO FOXP2_MACMU FOXP2_PANTR FOXP2_HYLLA FOXP2_HYLLA FOXP2_PONPY FOXP2_MOUSE FOXP2_XENLA

\$ blastdbcmd -entry FOXP2_HYLLA -db swissprot -long_seqids > FOXP2_HYLLA.fa

\$ blastdbcmd -entry_batch seqids.txt -db swissprot -long_seqids > foxp2.fa

[biguser@biglab-master session_7]\$ ls FOXP2_HYLLA.fa seqids.txt swissprot.pin swissprot.pni swissprot.psi foxp2.fa swissprot.phr swissprot.pnd swissprot.psd swissprot.psq

\$ clustalw2 foxp2.fa

CLUSTAL	2.1 Multiple Sequence Alignments	STAN AN
S - 14		
and the		
Sequence	format is Pearson	
Sequence	1: gil17432967 spl015409.2 F0XP2_HUMAN	715 ac
Sequence	2: gi1517014301sp1Q8MJ99.11F0XP2_GORG0	713 ad
Sequence	3: gi 51701429 sp Q8MJ97.1 F0XP2_MACMU	714 ac
Sequence	4: gil385030461splQ8MJA0.11F0XP2_PANTR	716 ac
Sequence	5: gil62286912 splQ5QL03.1 F0XP2_HYLLA	713 ac
Sequence	6: gil1463454201splQ8MJ98.31F0XP2_PONPY	713 ac
Sequence	7: gil51704301 splP58463.2 F0XP2_MOUSE	714 ac
Sequence	8: gil82227296 splQ4VYS1.1 FOXP2_XENLA	706 ac

Align	ing			
Group	1:	Sequences:	2	Score:15411
Group	2:	Sequences:	3	Score:15416
Group	3:	Sequences:	4	Score:15408
Group	4:	Sequences:	2	Score:15421
Group	5:	Sequences:	3	Score:15400
Group	6:	Sequences:	7	Score:15379
Group	7:	Sequences:	8	Score:14978
Alian	nen	t Score 1188	74	

Start of Pairwise alignments Aligning...

Sequences	(1:2)	Aligned.	Score:	99
Sequences	(1:3)	Aligned.	Score:	99
Sequences	(1:4)	Aligned.	Score:	99
Sequences	(1:5)	Aligned.	Score:	99
Sequences	(1:6)	Aligned.	Score:	99
Sequences	(1:7)	Aligned.	Score:	99
Sequences	(1:8)	Aligned.	Score:	95
Sequences	(2:3)	Aligned.	Score:	100
Sequences	(2:4)	Aligned.	Score:	100
Sequences	(2:5)	Aligned.	Score:	98
Sequences	(2:6)	Aligned.	Score:	98
Sequences	(2:7)	Aligned.	Score:	99
Sequences	(2:8)	Aligned.	Score:	95
Sequences	(3:4)	Aligned.	Score:	100
Sequences	(3:5)	Aligned.	Score:	100
Sequences	(3:6)	Aligned.	Score:	99
Sequences	(3:7)	Aligned.	Score:	98
Sequences	(3:8)	Aligned.	Score:	95
Sequences	(4:5)	Aligned.	Score:	100
Sequences	(4:6)	Aligned.	Score:	99
Sequences	(4:7)	Aligned.	Score:	99
Sequences	(4:8)	Aligned.	Score:	95
Sequences	(5:6)	Aligned.	Score:	99
Sequences	(5:7)	Aligned.	Score:	99
Sequences	(5:8)	Aligned.	Score:	95
Sequences	(6:7)	Aligned.	Score:	99
Sequences	(6:8)	Aligned.	Score:	95
Sequences	(7:8)	Aligned.	Score:	95
Guide tree	e file	created:	[foxp	2.dnd

foxp2.aln

CLUSTAL 2.1 multiple sequence alignment

gi |51701430| sp|Q8MJ99.1|FOXP2_ gi |51701429| sp|Q8MJ97.1|FOXP2_ gi |38503046| sp|Q8MJA0.1|FOXP2_ gi |12742967| sp|015409.2| FOXP2_ gi |62286912| sp|Q5QL03.1|FOXP2_ gi |51704301| sp|Q8MJ98.3|FOXP2 gi |51704301| sp|P58463.2|FOXP2_ gi |8227296| sp|04YY51.1|FOXP2_

gi |51701430| sp |Q8MJ99.1|F0XP2 gi |51701429| sp |Q8MJ97.1|F0XP2 gi |38503046| sp |Q8MJA0.1|F0XP2 gi |17432967| sp |015409.2|F0XP2 gi |62286912| sp |050L03.1|F0XP2 gi |146345420| sp |Q8MJ98.3|F0XP2 gi |51704301| sp |P58463.2|F0XP2 gi |82227296| sp |Q4VYS1.1|F0XP2

gi |51701430|sp|Q8MJ99.1|F0XP2_ gi |51701429|sp|Q8MJ97.1|F0XP2_ gi |38503046|sp|Q8MJA0.1|F0XP2_ gi |17432967|sp|015409.2|F0XP2_ gi |62286912|sp|Q5QL03.1|F0XP2_ gi |146345420|sp|Q8MJ98.3|F0XP2 gi |51704301|sp|F58463.2|F0XP2_ gi |82227296|sp|Q4VYS1.1|F0XP2_ MMQESATETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDTSSEVSTVELL MMQESATETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDTSSEVSTVELL MMQESATETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDTSSEVSTVELL MMQESATETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDTSSEVSTVELL MMQESATETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDTSSEVSTVELL MMQESATETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDTSSEVSTVELL MMQESATETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDTSSEVSTVELL

HLQQQQALQAARQLLLQQQTSGLKSPKSSDKQRPLQVPVSVAMMTPQVTT HLQQQQALQAARQLLLQQQTSGLKSPKSSDKQRPLQVPVSVAMMTPQVTT HLQQQALQAARQLLLQQQTSGLKSPKSSDKQRPLQVPVSVAMMTPQVTT HLQQQALQAARQLLLQQQTSGLKSPKSSDKQRPLQVPVSVAMMTPQVTT HLQQQALQAARQLLLQQQTSGLKSPKSSDKQRPLQVPVSVAMMTPQVTT HLQQQALQAARQLLLQQQTSGLKSPKSSEKQRPLQVPVSVAMMTPQVTT HLQQQALQAARQLLLQQQTSGLKSPKSSEKQRPLQVPVSVAMMTPQVTT HLQQQALQAARQLLLQQQTSGLKSPKSSEKQRPLQVPVSVAMMTPQVTT HLQQQALQAARQLLLQQQTSGLKSPKNNEKQRPLQVPVSVAMMTPQVTT

PQQMQQILQQQVLSPQQLQALLQQQQAVMLQQQQLQEFYKKQQEQLHLQL PQQMQQILQQQVLSPQQLQALLQQQQAVMLQQQQLQEFYKKQQEQLHLQL PQQMQQILQQQVLSPQQLQALLQQQQAVMLQQQQLQEFYKKQQEQLHLQL PQQMQQILQQVLSPQQLQALLQQQQAVMLQQQQLQEFYKKQQEQLHLQL PQQMQQILQQQVLSPQQLQALLQQQQAVMLQQQQLQEFYKKQQEQLHLQL PQQMQQILQQQVLSPQQLQALLQQQQAVMLQQQQLQEFYKKQQEQLHLQL PQQMQQILQQQVLSPQQLQALLQQQQAVMLQQQQLQEFYKKQQEQLHLQL

foxp2.dnd

(
C
gi 17432967 sp 015409.2 F0XP2_HUMAN:0.00122,
(
C C C C C C C C C C C C C C C C C C C
gi 51701430 sp Q8MJ99.1 FOXP2_GORGO:0.00117,
gi 51701429 sp Q8MJ97.1 FOXP2_MACMU:-0.00117)
:0.00196,
gi 1385030461sp108MJA0.11F0XP2_PANTR:-0.00196)
:0.00157)
:0.00059,
gi 82227296 sp 04VYS1, 1 FOXP2_XENLA: 0, 04051)
:0.00083.
gi 62286912 sp 050L03.1 F0XP2_HYLLA:0.00000.
gi 146345420 sp 08MJ98.3 F0XP2_P0NPY:0.00140)
:0.00066.
gi1517043011sp1P58463.21F0XP2_MOUSE:0.00074);

- -- all residues or nucleotides in the
- -- conserved substitutions have been
- -- semi-conserved substitutions have
- -- no match.

Phylogenetic tree from dendrogram

NJPlot: http://doua.prabi.fr/software/njplot

Identification of mutation specific to human

\$ clustalw2 foxp2.fa -output=fasta

\$ less foxp2.fasta

>gi | 51701430 | sp | Q8MJ99.1 | FOXP2_GORGO MMQESATETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDT SSEVSTVELLHLQQQQALQAARQLLLQQQTSGLKSPKSSD KORPLOVPVSVAMMTPOVITPOOMOOILOOOVLSPOOLOA LL0000AVML0000L0EFYKK00E0LHL0LL00000000 000000000000000000000000000000000000---HPGKQAKE QQQQQQQQQQLAAQQLVFQQQLLQMQQLQQQQHLLSLQRQ GLISIPPGQAALPVQSLPQAGLSPAEIQQLWKEVTGVHSM EDNGIKHGGLDLTTNNSSSTTSSTTSKASPPITHHSIVNG **OSSVLNARRDSSSHEETGASHTLYGHGVCKWPGCESICED** FGQFLKHLNNEHALDDRSTAQCRVQMQVVQQLEIQLSKER ERLOAMMTHLHMRPSEPKPSPKPLNLVSSVTMSKNMLETS POSLPOTPTTPTAPVTPITQGPSVITPASVPNVGAIRRRH **SDKYNIPMSSEIAPNYEFYKNADVRPPFTYATLIROAIME** SSDRQLTLNEIYSWFTRTFAYFRRNAATWKNAVRHNLSLH KCFVRVENVKGAVWTVDEVEYQKRRSQKITGSPTLVKNIP TSLGYGAALNASLQAALAESSLPLLSNPGLINNASSGLLQ AVHEDLNGSLDHIDSNGNSSPGCSPQPHIHSIHVKEEPVI **AEDEDCPMSLVTTANHSPELEDDREIEEEPLSEDLE** >qi|51701429|sp|08MJ97.1|F0XP2_MACMU

만약에 linux 상에서 작업할 수 없거나 결과를 만들지 못했으면 In -s /home/biguser/tutor/Week7/foxp2.fasta .

를 실행시키고 foxp2.fasta 파일 링크가 형성됐는지 확인하세요!

Identification of mutation specific to human

□ foxp2.py

	POSITION 1	POSITION 2
HUMAN	A	т
GORGO	А	Α
MACMU	А	С
PANTR	А	С
HYLLA	А	Α
PONPY	А	G

import re

inFile = open('foxp2.fasta','r') nonhuman = dict()id = ''' seg = '' for line in inFile.readlines(): line = line.strip() #print line if re.search('^>', line): if id != '': if not "HUMAN" in id: nonhuman[id[1:]] = seq else: id_human = id[1:] seq_human = seq id = line seg = '' else: id = line else: seq += line if not "HUMAN" in id: nonhuman[id[1:]] = seq else: id_human = id[1:] seq_human = seq inFile.close() for i in xrange(0.len(seq_human)): unique = True for id in nonhuman.kevs(): human_seq_posi = seq_human[i] nonhuman_seq_posi = nonhuman[id][i] if human_seq_posi == nonhuman_seq_posi: unique = False if unique: pos = i + 1print "At position ", pos aa = human_seq_posi print id_human, '#t', aa for ID in nonhuman.kevs(): print ID, '#t', nonhuman[ID][i]

Identification of mutation specific to human

results

- At position 304
- sp|015409|F0XP2_HUMAN
- sp|P58463|FOXP2_MOUSE

N

Т

Т

Т

Т

Т

T T

- sp|Q8MJ98|F0XP2_PONPY
- sp|Q4VYS1|F0XP2_XENLA
- sp|Q8MJ97|FOXP2_MACMU
- sp|Q8MJAO|F0XP2_PANTR
- sp|Q5QLO3|F0XP2_HYLLA
- sp|Q8MJ99|F0XP2_GORGO

Human-specific T303N

- T303N and N325S are positively selected for language and speech
- No N325S in our res. due to Xenopus

Exercise

- Modify foxp2.py such that you may identify
- positions where the human sequence is <u>different from all</u> other primates and mouse;
- 2. positions where the <u>human and primate</u> sequences are identical but different to both mouse and frog.

Exercise -1

At position 304 sp[015409]F0XP2_HUMAN N sp1P584631F0XP2_MOUSE splQ8MJ98lF0XP2_P0NPY splQ8MJ97lF0XP2_MACMU sp108MJA01F0XP2_PANTR sp1050L031F0XP2_HYLLA Т splQ8MJ99lF0XP2_G0RG0 Т At position 326 sp[015409]F0XP2_HUMAN S sp1P584631F0XP2_MOUSE N sp|Q8MJ98|F0XP2_P0NPY N splQ8MJ97lF0XP2_MACMU N sp108MJA01F0XP2_PANTR N sp1050L031F0XP2_HYLLA N splQ8MJ99lF0XP2_G0RG0 N

import re inFile = open('foxp2.fasta'.'r') nonhuman = dict() id = ''' seg = '' for line in inFile.readlines(): line = line.strip() #print line if re.search('^>', line): if id != '': if not "HUMAN" in id: nonhuman[id[1:]] = seq else: id_human = id[1:] seq_human = seq id = line seq = `` else: id = line else: seq += line if not "HUMAN" in id: nonhuman[id[1:]] = seq else: id_human = id[1:] seq_human = seq inFile.close() for i in xrange(0,len(seq_human)): unique = True for id in nonhuman.kevs(): if not "XENLA" in id: human_seq_posi = seq_human[i] nonhuman_seq_posi = nonhuman[id][i] if human_seq_posi == nonhuman_seq_posi: unique = False if unique: pos = i + 1print "At position ", pos aa = human_seq_posi print id_human. '#t'. aa for ID in nonhuman.kevs():

if not "XENLA" in ID:

print ID. '#t'. nonhuman[ID][i]

Exercise-2

At position 80 sp|015409|F0XP2_HUMAN sp|P58463|F0XP2_MOUSE sp|Q8MJ98|F0XP2_P0NPY sp|Q4VYS1|F0XP2_XENLA sp|Q8MJ97|F0XP2_MACMU sp|Q8MJA0|F0XP2_PANTR sp|Q5QL03|F0XP2_HYLLA sp|Q8MJ99|F0XP2_G0RG0

D

Е

D

Е

D

D

D

D

```
import re
inFile = open('foxp2.fasta','r')
nonhuman = dict()
id = 11
seg = ''
for line in inFile.readlines():
    line = line.strip()
    #print line
    if re.search('^>', line):
        if id != ``:
            if not "HUMAN" in id:
               nonhuman[id[1:]] = seq
            else:
                id_human = id[1:]
               seq_human = seq
            id = line
            seg = ''
        else:
            id = line
    else:
        seg += line
if not "HUMAN" in id:
    nonhuman[id[1:]] = seq
else:
    id_human = id[1:]
    seq_human = seq
inFile.close()
for i in xrange(0,len(seq_human)):
    unique = True
    for id in nonhuman.keys():
        human_seq_posi= seq_human[i]
        if "XENLA" in id or "MOUSE" in id:
            if human_seq_posi == nonhuman[id][i]:
               unique=False
        else:
            if human_seq_posi != nonhuman[id][i]:
               unique=False
    if unique:
        pos = i + 1
        print "At position ", pos
        aa = human_seq_posi
        print id_human, '#t', aa
        for ID in nonhuman.keys():
            print ID. '#t'. nonhuman[ID][i]
```

Assignment

- In the default output from the ClustalW program (a file named as foxp2.aln) there are asterisks (*) that indicate positions where the sequence is same in all sequences. Make a Python script to count the total length and number of such positions in all alignment.
- Output

Total length : 716 Number of asterisk (match) : 674

Submit a word file w/ your python script and result.

□ 10/24 월요일 오후 6시까지 제출

Assignment

In -s/home/biguser/tutor/Session7/foxp2.aln.

를 linux환경에서 여러분의 directory에서 실행시키고 해당 파일 link가 형성 됐는지 확인. 해당 파일을 읽어서 작업할 것

CLUSTAL 2.1 multiple sequence alignment

gi|51701430|sp|Q8MJ99.1|FOXP2_ gi|51701429|sp|Q8MJ97.1|FOXP2_ gi|38503046|sp|Q8MJA0.1|FOXP2_ gi|17432967|sp|015409.2|FOXP2_ gi|62286912|sp|Q5QL03.1|FOXP2_ gi|146345420|sp|Q8MJ98.3|FOXP2 gi|51704301|sp|P58463.2|FOXP2_ gi|82227296|sp|Q4VYS1.1|FOXP2

gi|51701430|sp|Q8MJ99.1|F0XP2_ gi|51701429|sp|Q8MJ97.1|F0XP2_ gi|38503046|sp|Q8MJA0.1|F0XP2_ gi|17432967|sp|015409.2|F0XP2_ gi|62286912|sp|Q5QL03.1|F0XP2_ gi|146345420|sp|Q8MJ98.3|F0XP2 gi|51704301|sp|P58463.2|F0XP2_ gi|82227296|sp|Q4VYS1.1|F0XP2_ MMQESATETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDTSSEVSTVELL MMQESATETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDTSSEVSTVELL MMQESATETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDTSSEVSTVELL MMQESATETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDTSSEVSTVELL MMQESATETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDTSSEVSTVELL MMQESATETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDTSSEVSTVELL MMQESATETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDTSSEVSTVELL MMQESATETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDTSSEVSTVELL MMQESATETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDTSSEVSTVELL

HLQQQQALQAARQLLLQQQTSGLKSPKSSDKQRPLQVPVSVAMMTPQVIT HLQQQQALQAARQLLLQQQTSGLKSPKSSDKQRPLQVPVSVAMMTPQVIT HLQQQQALQAARQLLLQQQTSGLKSPKSSDKQRPLQVPVSVAMMTPQVIT HLQQQQALQAARQLLLQQQTSGLKSPKSSDKQRPLQVPVSVAMMTPQVIT HLQQQQALQAARQLLLQQQTSGLKSPKSSDKQRPLQVPVSVAMMTPQVIT HLQQQQALQAARQLLLQQQTSGLKSPKSSDKQRPLQVPVSVAMMTPQVIT HLQQQQALQAARQLLLQQQTSGLKSPKSSEKQRPLQVPVSVAMMTPQVIT HLQQQQALQAARQLLLQQQTSGLKSPKNNEKQRPLQVPVSVAMMTPQVIT